logwrap.c 16 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <string.h>
#include <sys/types.h>
19
#include <sys/socket.h>
20
#include <poll.h>
21 22 23 24 25 26 27
#include <sys/wait.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <fcntl.h>
#include <libgen.h>
28
#include <stdbool.h>
29
#include <pthread.h>
30 31 32 33

#include <logwrap/logwrap.h>
#include "private/android_filesystem_config.h"
#include "cutils/log.h"
34
#include <cutils/klog.h>
35

36
#define ARRAY_SIZE(x)   (sizeof(x) / sizeof(*(x)))
37
#define MIN(a,b) (((a)<(b))?(a):(b))
38

39
static pthread_mutex_t fd_mutex = PTHREAD_MUTEX_INITIALIZER;
40

41
#define ERROR(fmt, args...)                                                   \
42
do {                                                                          \
43 44
    fprintf(stderr, fmt, ## args);                                            \
    ALOG(LOG_ERROR, "logwrapper", fmt, ## args);                              \
45 46
} while(0)

47
#define FATAL_CHILD(fmt, args...)                                             \
48
do {                                                                          \
49
    ERROR(fmt, ## args);                                                      \
50 51
    _exit(-1);                                                                \
} while(0)
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
#define MAX_KLOG_TAG 16

/* This is a simple buffer that holds up to the first beginning_buf->buf_size
 * bytes of output from a command.
 */
#define BEGINNING_BUF_SIZE 0x1000
struct beginning_buf {
    char *buf;
    size_t alloc_len;
    /* buf_size is the usable space, which is one less than the allocated size */
    size_t buf_size;
    size_t used_len;
};

/* This is a circular buf that holds up to the last ending_buf->buf_size bytes
 * of output from a command after the first beginning_buf->buf_size bytes
 * (which are held in beginning_buf above).
 */
#define ENDING_BUF_SIZE 0x1000
struct ending_buf {
    char *buf;
    ssize_t alloc_len;
    /* buf_size is the usable space, which is one less than the allocated size */
    ssize_t buf_size;
    ssize_t used_len;
    /* read and write offsets into the circular buffer */
    int read;
    int write;
};

 /* A structure to hold all the abbreviated buf data */
struct abbr_buf {
    struct beginning_buf b_buf;
    struct ending_buf e_buf;
    int beginning_buf_full;
};

/* Collect all the various bits of info needed for logging in one place. */
struct log_info {
    int log_target;
    char klog_fmt[MAX_KLOG_TAG * 2];
    char *btag;
    bool abbreviated;
    struct abbr_buf a_buf;
};

/* Forware declaration */
static void add_line_to_abbr_buf(struct abbr_buf *a_buf, char *linebuf, int linelen);

/* Return 0 on success, and 1 when full */
static int add_line_to_linear_buf(struct beginning_buf *b_buf,
                                   char *line, ssize_t line_len)
{
    size_t new_len;
    char *new_buf;
    int full = 0;

    if ((line_len + b_buf->used_len) > b_buf->buf_size) {
        full = 1;
    } else {
        /* Add to the end of the buf */
        memcpy(b_buf->buf + b_buf->used_len, line, line_len);
        b_buf->used_len += line_len;
    }

    return full;
}

static void add_line_to_circular_buf(struct ending_buf *e_buf,
                                     char *line, ssize_t line_len)
{
    ssize_t free_len;
    ssize_t needed_space;
    char *new_buf;
    int cnt;

    if (e_buf->buf == NULL) {
        return;
    }

   if (line_len > e_buf->buf_size) {
       return;
   }

    free_len = e_buf->buf_size - e_buf->used_len;

    if (line_len > free_len) {
        /* remove oldest entries at read, and move read to make
         * room for the new string */
        needed_space = line_len - free_len;
        e_buf->read = (e_buf->read + needed_space) % e_buf->buf_size;
        e_buf->used_len -= needed_space;
    }

    /* Copy the line into the circular buffer, dealing with possible
     * wraparound.
     */
    cnt = MIN(line_len, e_buf->buf_size - e_buf->write);
    memcpy(e_buf->buf + e_buf->write, line, cnt);
    if (cnt < line_len) {
        memcpy(e_buf->buf, line + cnt, line_len - cnt);
    }
    e_buf->used_len += line_len;
    e_buf->write = (e_buf->write + line_len) % e_buf->buf_size;
}

/* Log directly to the specified log */
static void do_log_line(struct log_info *log_info, char *line) {
    if (log_info->log_target == LOG_KLOG) {
        klog_write(6, log_info->klog_fmt, line);
    } else if (log_info->log_target == LOG_ALOG) {
        ALOG(LOG_INFO, log_info->btag, "%s", line);
    }
}

/* Log to either the abbreviated buf, or directly to the specified log
 * via do_log_line() above.
 */
static void log_line(struct log_info *log_info, char *line, int len) {
    if (log_info->abbreviated) {
        add_line_to_abbr_buf(&log_info->a_buf, line, len);
    } else {
        do_log_line(log_info, line);
    }
}

/*
 * The kernel will take a maximum of 1024 bytes in any single write to
 * the kernel logging device file, so find and print each line one at
 * a time.  The allocated size for buf should be at least 1 byte larger
 * than buf_size (the usable size of the buffer) to make sure there is
 * room to temporarily stuff a null byte to terminate a line for logging.
 */
static void print_buf_lines(struct log_info *log_info, char *buf, int buf_size)
{
    char *line_start;
    char c;
    int line_len;
    int i;

    line_start = buf;
    for (i = 0; i < buf_size; i++) {
        if (*(buf + i) == '\n') {
            /* Found a line ending, print the line and compute new line_start */
            /* Save the next char and replace with \0 */
            c = *(buf + i + 1);
            *(buf + i + 1) = '\0';
            do_log_line(log_info, line_start);
            /* Restore the saved char */
            *(buf + i + 1) = c;
            line_start = buf + i + 1;
        } else if (*(buf + i) == '\0') {
            /* The end of the buffer, print the last bit */
            do_log_line(log_info, line_start);
            break;
        }
    }
    /* If the buffer was completely full, and didn't end with a newline, just
     * ignore the partial last line.
     */
}

static void init_abbr_buf(struct abbr_buf *a_buf) {
    char *new_buf;

    memset(a_buf, 0, sizeof(struct abbr_buf));
    new_buf = malloc(BEGINNING_BUF_SIZE);
    if (new_buf) {
        a_buf->b_buf.buf = new_buf;
        a_buf->b_buf.alloc_len = BEGINNING_BUF_SIZE;
        a_buf->b_buf.buf_size = BEGINNING_BUF_SIZE - 1;
    }
    new_buf = malloc(ENDING_BUF_SIZE);
    if (new_buf) {
        a_buf->e_buf.buf = new_buf;
        a_buf->e_buf.alloc_len = ENDING_BUF_SIZE;
        a_buf->e_buf.buf_size = ENDING_BUF_SIZE - 1;
    }
}

static void free_abbr_buf(struct abbr_buf *a_buf) {
    free(a_buf->b_buf.buf);
    free(a_buf->e_buf.buf);
}

static void add_line_to_abbr_buf(struct abbr_buf *a_buf, char *linebuf, int linelen) {
    if (!a_buf->beginning_buf_full) {
        a_buf->beginning_buf_full =
            add_line_to_linear_buf(&a_buf->b_buf, linebuf, linelen);
    }
    if (a_buf->beginning_buf_full) {
        add_line_to_circular_buf(&a_buf->e_buf, linebuf, linelen);
    }
}

static void print_abbr_buf(struct log_info *log_info) {
    struct abbr_buf *a_buf = &log_info->a_buf;

    /* Add the abbreviated output to the kernel log */
    if (a_buf->b_buf.alloc_len) {
        print_buf_lines(log_info, a_buf->b_buf.buf, a_buf->b_buf.used_len);
    }

    /* Print an ellipsis to indicate that the buffer has wrapped or
     * is full, and some data was not logged.
     */
    if (a_buf->e_buf.used_len == a_buf->e_buf.buf_size) {
        do_log_line(log_info, "...\n");
    }

    if (a_buf->e_buf.used_len == 0) {
        return;
    }

    /* Simplest way to print the circular buffer is allocate a second buf
     * of the same size, and memcpy it so it's a simple linear buffer,
     * and then cal print_buf_lines on it */
    if (a_buf->e_buf.read < a_buf->e_buf.write) {
        /* no wrap around, just print it */
        print_buf_lines(log_info, a_buf->e_buf.buf + a_buf->e_buf.read,
                        a_buf->e_buf.used_len);
    } else {
        /* The circular buffer will always have at least 1 byte unused,
         * so by allocating alloc_len here we will have at least
         * 1 byte of space available as required by print_buf_lines().
         */
        char * nbuf = malloc(a_buf->e_buf.alloc_len);
        if (!nbuf) {
            return;
        }
        int first_chunk_len = a_buf->e_buf.buf_size - a_buf->e_buf.read;
        memcpy(nbuf, a_buf->e_buf.buf + a_buf->e_buf.read, first_chunk_len);
        /* copy second chunk */
        memcpy(nbuf + first_chunk_len, a_buf->e_buf.buf, a_buf->e_buf.write);
        print_buf_lines(log_info, nbuf, first_chunk_len + a_buf->e_buf.write);
        free(nbuf);
    }
}

static int parent(const char *tag, int parent_read, pid_t pid,
        int *chld_sts, int log_target, bool abbreviated) {
294
    int status = 0;
295
    char buffer[4096];
296 297
    struct pollfd poll_fds[] = {
        [0] = {
298
            .fd = parent_read,
299 300 301
            .events = POLLIN,
        },
    };
302
    int rc = 0;
303

304 305
    struct log_info log_info;

306 307 308
    int a = 0;  // start index of unprocessed data
    int b = 0;  // end index of unprocessed data
    int sz;
309
    bool found_child = false;
310
    char tmpbuf[256];
311

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    log_info.log_target = log_target;
    log_info.abbreviated = abbreviated;
    log_info.btag = basename(tag);
    if (!log_info.btag) {
        log_info.btag = (char*) tag;
    }

    if (abbreviated && (log_target == LOG_NONE)) {
        abbreviated = 0;
    }
    if (abbreviated) {
        init_abbr_buf(&log_info.a_buf);
    }

    if (log_target == LOG_KLOG) {
        snprintf(log_info.klog_fmt, sizeof(log_info.klog_fmt),
                 "<6>%.*s: %%s", MAX_KLOG_TAG, log_info.btag);
    }
330

331
    while (!found_child) {
332
        if (TEMP_FAILURE_RETRY(poll(poll_fds, ARRAY_SIZE(poll_fds), -1)) < 0) {
333
            ERROR("poll failed\n");
334 335
            rc = -1;
            goto err_poll;
336
        }
337

338 339
        if (poll_fds[0].revents & POLLIN) {
            sz = read(parent_read, &buffer[b], sizeof(buffer) - 1 - b);
340

341 342 343 344
            sz += b;
            // Log one line at a time
            for (b = 0; b < sz; b++) {
                if (buffer[b] == '\r') {
345 346 347 348 349 350 351 352 353 354 355 356
                    if (abbreviated) {
                        /* The abbreviated logging code uses newline as
                         * the line separator.  Lucikly, the pty layer
                         * helpfully cooks the output of the command
                         * being run and inserts a CR before NL.  So
                         * I just change it to NL here when doing
                         * abbreviated logging.
                         */
                        buffer[b] = '\n';
                    } else {
                        buffer[b] = '\0';
                    }
357
                } else if (buffer[b] == '\n') {
358
                    buffer[b] = '\0';
359
                    log_line(&log_info, &buffer[a], b - a);
360
                    a = b + 1;
361 362 363
                }
            }

364 365 366
            if (a == 0 && b == sizeof(buffer) - 1) {
                // buffer is full, flush
                buffer[b] = '\0';
367
                log_line(&log_info, &buffer[a], b - a);
368 369 370 371 372 373 374 375 376
                b = 0;
            } else if (a != b) {
                // Keep left-overs
                b -= a;
                memmove(buffer, &buffer[a], b);
                a = 0;
            } else {
                a = 0;
                b = 0;
377 378 379
            }
        }

380
        if (poll_fds[0].revents & POLLHUP) {
381
            int ret;
382

383 384 385 386 387 388 389 390
            ret = waitpid(pid, &status, WNOHANG);
            if (ret < 0) {
                rc = errno;
                ALOG(LOG_ERROR, "logwrap", "waitpid failed with %s\n", strerror(errno));
                goto err_waitpid;
            }
            if (ret > 0) {
                found_child = true;
391 392
            }
        }
393
    }
394

395 396 397 398 399 400 401
    if (chld_sts != NULL) {
        *chld_sts = status;
    } else {
      if (WIFEXITED(status))
        rc = WEXITSTATUS(status);
      else
        rc = -ECHILD;
402 403
    }

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    // Flush remaining data
    if (a != b) {
      buffer[b] = '\0';
      log_line(&log_info, &buffer[a], b - a);
    }

    /* All the output has been processed, time to dump the abbreviated output */
    if (abbreviated) {
        print_abbr_buf(&log_info);
    }

    if (WIFEXITED(status)) {
      if (WEXITSTATUS(status)) {
        snprintf(tmpbuf, sizeof(tmpbuf),
                 "%s terminated by exit(%d)\n", log_info.btag, WEXITSTATUS(status));
        do_log_line(&log_info, tmpbuf);
420
      }
421 422 423 424 425 426 427 428 429
    } else {
      if (WIFSIGNALED(status)) {
        snprintf(tmpbuf, sizeof(tmpbuf),
                       "%s terminated by signal %d\n", log_info.btag, WTERMSIG(status));
        do_log_line(&log_info, tmpbuf);
      } else if (WIFSTOPPED(status)) {
        snprintf(tmpbuf, sizeof(tmpbuf),
                       "%s stopped by signal %d\n", log_info.btag, WSTOPSIG(status));
        do_log_line(&log_info, tmpbuf);
430
      }
431 432
    }

433
err_waitpid:
434
err_poll:
435 436 437
    if (abbreviated) {
        free_abbr_buf(&log_info.a_buf);
    }
438
    return rc;
439 440
}

441
static void child(int argc, char* argv[]) {
442 443 444 445 446 447
    // create null terminated argv_child array
    char* argv_child[argc + 1];
    memcpy(argv_child, argv, argc * sizeof(char *));
    argv_child[argc] = NULL;

    if (execvp(argv_child[0], argv_child)) {
448
        FATAL_CHILD("executing %s failed: %s\n", argv_child[0],
449
                strerror(errno));
450 451 452
    }
}

453 454
int android_fork_execvp_ext(int argc, char* argv[], int *status, bool ignore_int_quit,
        int log_target, bool abbreviated) {
455 456 457 458
    pid_t pid;
    int parent_ptty;
    int child_ptty;
    char *child_devname = NULL;
459 460
    struct sigaction intact;
    struct sigaction quitact;
461 462 463
    sigset_t blockset;
    sigset_t oldset;
    int rc = 0;
464

465 466 467 468 469 470
    rc = pthread_mutex_lock(&fd_mutex);
    if (rc) {
        ERROR("failed to lock signal_fd mutex\n");
        goto err_lock;
    }

471 472 473
    /* Use ptty instead of socketpair so that STDOUT is not buffered */
    parent_ptty = open("/dev/ptmx", O_RDWR);
    if (parent_ptty < 0) {
474
        ERROR("Cannot create parent ptty\n");
475 476
        rc = -1;
        goto err_open;
477 478 479 480
    }

    if (grantpt(parent_ptty) || unlockpt(parent_ptty) ||
            ((child_devname = (char*)ptsname(parent_ptty)) == 0)) {
481
        ERROR("Problem with /dev/ptmx\n");
482 483
        rc = -1;
        goto err_ptty;
484 485
    }

486 487 488 489 490 491 492
    child_ptty = open(child_devname, O_RDWR);
    if (child_ptty < 0) {
        ERROR("Cannot open child_ptty\n");
        rc = -1;
        goto err_child_ptty;
    }

493
    sigemptyset(&blockset);
494 495
    sigaddset(&blockset, SIGINT);
    sigaddset(&blockset, SIGQUIT);
496
    pthread_sigmask(SIG_BLOCK, &blockset, &oldset);
497

498 499
    pid = fork();
    if (pid < 0) {
500
        close(child_ptty);
501
        ERROR("Failed to fork\n");
502 503
        rc = -1;
        goto err_fork;
504
    } else if (pid == 0) {
505
        pthread_mutex_unlock(&fd_mutex);
506
        pthread_sigmask(SIG_SETMASK, &oldset, NULL);
507
        close(parent_ptty);
508

509 510 511 512 513
        // redirect stdout and stderr
        dup2(child_ptty, 1);
        dup2(child_ptty, 2);
        close(child_ptty);

514
        child(argc, argv);
515
    } else {
516
        close(child_ptty);
517
        if (ignore_int_quit) {
518 519
            struct sigaction ignact;

520 521 522 523 524 525
            memset(&ignact, 0, sizeof(ignact));
            ignact.sa_handler = SIG_IGN;
            sigaction(SIGINT, &ignact, &intact);
            sigaction(SIGQUIT, &ignact, &quitact);
        }

526
        rc = parent(argv[0], parent_ptty, pid, status, log_target, abbreviated);
527
    }
528

529 530 531 532
    if (ignore_int_quit) {
        sigaction(SIGINT, &intact, NULL);
        sigaction(SIGQUIT, &quitact, NULL);
    }
533
err_fork:
534
    pthread_sigmask(SIG_SETMASK, &oldset, NULL);
535
err_child_ptty:
536 537 538
err_ptty:
    close(parent_ptty);
err_open:
539 540
    pthread_mutex_unlock(&fd_mutex);
err_lock:
541
    return rc;
542
}