BufferQueueConsumer.cpp 20.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

17 18
#include <inttypes.h>

19 20 21 22
#define LOG_TAG "BufferQueueConsumer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
//#define LOG_NDEBUG 0

23 24 25 26
#include <gui/BufferItem.h>
#include <gui/BufferQueueConsumer.h>
#include <gui/BufferQueueCore.h>
#include <gui/IConsumerListener.h>
27
#include <gui/IProducerListener.h>
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

namespace android {

BufferQueueConsumer::BufferQueueConsumer(const sp<BufferQueueCore>& core) :
    mCore(core),
    mSlots(core->mSlots),
    mConsumerName() {}

BufferQueueConsumer::~BufferQueueConsumer() {}

status_t BufferQueueConsumer::acquireBuffer(BufferItem* outBuffer,
        nsecs_t expectedPresent) {
    ATRACE_CALL();
    Mutex::Autolock lock(mCore->mMutex);

    // Check that the consumer doesn't currently have the maximum number of
    // buffers acquired. We allow the max buffer count to be exceeded by one
    // buffer so that the consumer can successfully set up the newly acquired
    // buffer before releasing the old one.
    int numAcquiredBuffers = 0;
48
    for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        if (mSlots[s].mBufferState == BufferSlot::ACQUIRED) {
            ++numAcquiredBuffers;
        }
    }
    if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1) {
        BQ_LOGE("acquireBuffer: max acquired buffer count reached: %d (max %d)",
                numAcquiredBuffers, mCore->mMaxAcquiredBufferCount);
        return INVALID_OPERATION;
    }

    // Check if the queue is empty.
    // In asynchronous mode the list is guaranteed to be one buffer deep,
    // while in synchronous mode we use the oldest buffer.
    if (mCore->mQueue.empty()) {
        return NO_BUFFER_AVAILABLE;
    }

    BufferQueueCore::Fifo::iterator front(mCore->mQueue.begin());

    // If expectedPresent is specified, we may not want to return a buffer yet.
    // If it's specified and there's more than one buffer queued, we may want
    // to drop a buffer.
    if (expectedPresent != 0) {
        const int MAX_REASONABLE_NSEC = 1000000000ULL; // 1 second

        // The 'expectedPresent' argument indicates when the buffer is expected
        // to be presented on-screen. If the buffer's desired present time is
        // earlier (less) than expectedPresent -- meaning it will be displayed
        // on time or possibly late if we show it as soon as possible -- we
        // acquire and return it. If we don't want to display it until after the
        // expectedPresent time, we return PRESENT_LATER without acquiring it.
        //
        // To be safe, we don't defer acquisition if expectedPresent is more
        // than one second in the future beyond the desired present time
        // (i.e., we'd be holding the buffer for a long time).
        //
        // NOTE: Code assumes monotonic time values from the system clock
        // are positive.

        // Start by checking to see if we can drop frames. We skip this check if
        // the timestamps are being auto-generated by Surface. If the app isn't
        // generating timestamps explicitly, it probably doesn't want frames to
        // be discarded based on them.
92 93 94 95 96 97 98
        //
        // If the consumer is shadowing our queue, we also make sure that we
        // don't drop so many buffers that the consumer hasn't received the
        // onFrameAvailable callback for the buffer it acquires. That is, we
        // want the buffer we return to be in the consumer's shadow queue.
        size_t droppableBuffers = mCore->mConsumerShadowQueueSize > 1 ?
                mCore->mConsumerShadowQueueSize - 1 : 0;
99
        while (mCore->mQueue.size() > 1 && !mCore->mQueue[0].mIsAutoTimestamp) {
100 101 102 103 104 105
            if (mCore->mConsumerHasShadowQueue && droppableBuffers == 0) {
                BQ_LOGV("acquireBuffer: no droppable buffers in consumer's"
                        " shadow queue, continuing");
                break;
            }

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
            // If entry[1] is timely, drop entry[0] (and repeat). We apply an
            // additional criterion here: we only drop the earlier buffer if our
            // desiredPresent falls within +/- 1 second of the expected present.
            // Otherwise, bogus desiredPresent times (e.g., 0 or a small
            // relative timestamp), which normally mean "ignore the timestamp
            // and acquire immediately", would cause us to drop frames.
            //
            // We may want to add an additional criterion: don't drop the
            // earlier buffer if entry[1]'s fence hasn't signaled yet.
            const BufferItem& bufferItem(mCore->mQueue[1]);
            nsecs_t desiredPresent = bufferItem.mTimestamp;
            if (desiredPresent < expectedPresent - MAX_REASONABLE_NSEC ||
                    desiredPresent > expectedPresent) {
                // This buffer is set to display in the near future, or
                // desiredPresent is garbage. Either way we don't want to drop
                // the previous buffer just to get this on the screen sooner.
122 123 124
                BQ_LOGV("acquireBuffer: nodrop desire=%" PRId64 " expect=%"
                        PRId64 " (%" PRId64 ") now=%" PRId64,
                        desiredPresent, expectedPresent,
125 126 127 128 129
                        desiredPresent - expectedPresent,
                        systemTime(CLOCK_MONOTONIC));
                break;
            }

130 131
            BQ_LOGV("acquireBuffer: drop desire=%" PRId64 " expect=%" PRId64
                    " size=%zu",
132 133 134 135
                    desiredPresent, expectedPresent, mCore->mQueue.size());
            if (mCore->stillTracking(front)) {
                // Front buffer is still in mSlots, so mark the slot as free
                mSlots[front->mSlot].mBufferState = BufferSlot::FREE;
136
                mCore->mFreeBuffers.push_back(front->mSlot);
137 138 139
            }
            mCore->mQueue.erase(front);
            front = mCore->mQueue.begin();
140
            --droppableBuffers;
141 142 143 144 145 146
        }

        // See if the front buffer is due
        nsecs_t desiredPresent = front->mTimestamp;
        if (desiredPresent > expectedPresent &&
                desiredPresent < expectedPresent + MAX_REASONABLE_NSEC) {
147 148 149
            BQ_LOGV("acquireBuffer: defer desire=%" PRId64 " expect=%" PRId64
                    " (%" PRId64 ") now=%" PRId64,
                    desiredPresent, expectedPresent,
150 151 152 153 154
                    desiredPresent - expectedPresent,
                    systemTime(CLOCK_MONOTONIC));
            return PRESENT_LATER;
        }

155 156
        BQ_LOGV("acquireBuffer: accept desire=%" PRId64 " expect=%" PRId64 " "
                "(%" PRId64 ") now=%" PRId64, desiredPresent, expectedPresent,
157 158 159 160 161 162 163 164
                desiredPresent - expectedPresent,
                systemTime(CLOCK_MONOTONIC));
    }

    int slot = front->mSlot;
    *outBuffer = *front;
    ATRACE_BUFFER_INDEX(slot);

165
    BQ_LOGV("acquireBuffer: acquiring { slot=%d/%" PRIu64 " buffer=%p }",
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
            slot, front->mFrameNumber, front->mGraphicBuffer->handle);
    // If the front buffer is still being tracked, update its slot state
    if (mCore->stillTracking(front)) {
        mSlots[slot].mAcquireCalled = true;
        mSlots[slot].mNeedsCleanupOnRelease = false;
        mSlots[slot].mBufferState = BufferSlot::ACQUIRED;
        mSlots[slot].mFence = Fence::NO_FENCE;
    }

    // If the buffer has previously been acquired by the consumer, set
    // mGraphicBuffer to NULL to avoid unnecessarily remapping this buffer
    // on the consumer side
    if (outBuffer->mAcquireCalled) {
        outBuffer->mGraphicBuffer = NULL;
    }

    mCore->mQueue.erase(front);
183 184 185 186

    // We might have freed a slot while dropping old buffers, or the producer
    // may be blocked waiting for the number of buffers in the queue to
    // decrease.
187 188 189 190
    mCore->mDequeueCondition.broadcast();

    ATRACE_INT(mCore->mConsumerName.string(), mCore->mQueue.size());

191 192
    mCore->validateConsistencyLocked();

193 194 195
    return NO_ERROR;
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
status_t BufferQueueConsumer::detachBuffer(int slot) {
    ATRACE_CALL();
    ATRACE_BUFFER_INDEX(slot);
    BQ_LOGV("detachBuffer(C): slot %d", slot);
    Mutex::Autolock lock(mCore->mMutex);

    if (mCore->mIsAbandoned) {
        BQ_LOGE("detachBuffer(C): BufferQueue has been abandoned");
        return NO_INIT;
    }

    if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) {
        BQ_LOGE("detachBuffer(C): slot index %d out of range [0, %d)",
                slot, BufferQueueDefs::NUM_BUFFER_SLOTS);
        return BAD_VALUE;
    } else if (mSlots[slot].mBufferState != BufferSlot::ACQUIRED) {
        BQ_LOGE("detachBuffer(C): slot %d is not owned by the consumer "
                "(state = %d)", slot, mSlots[slot].mBufferState);
        return BAD_VALUE;
    }

    mCore->freeBufferLocked(slot);
    mCore->mDequeueCondition.broadcast();
219
    mCore->validateConsistencyLocked();
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

    return NO_ERROR;
}

status_t BufferQueueConsumer::attachBuffer(int* outSlot,
        const sp<android::GraphicBuffer>& buffer) {
    ATRACE_CALL();

    if (outSlot == NULL) {
        BQ_LOGE("attachBuffer(P): outSlot must not be NULL");
        return BAD_VALUE;
    } else if (buffer == NULL) {
        BQ_LOGE("attachBuffer(P): cannot attach NULL buffer");
        return BAD_VALUE;
    }

    Mutex::Autolock lock(mCore->mMutex);

238
    // Make sure we don't have too many acquired buffers
239 240 241 242 243 244 245 246 247 248 249 250 251
    int numAcquiredBuffers = 0;
    for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
        if (mSlots[s].mBufferState == BufferSlot::ACQUIRED) {
            ++numAcquiredBuffers;
        }
    }

    if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1) {
        BQ_LOGE("attachBuffer(P): max acquired buffer count reached: %d "
                "(max %d)", numAcquiredBuffers,
                mCore->mMaxAcquiredBufferCount);
        return INVALID_OPERATION;
    }
252 253 254 255 256 257 258 259 260 261 262

    // Find a free slot to put the buffer into
    int found = BufferQueueCore::INVALID_BUFFER_SLOT;
    if (!mCore->mFreeSlots.empty()) {
        auto slot = mCore->mFreeSlots.begin();
        found = *slot;
        mCore->mFreeSlots.erase(slot);
    } else if (!mCore->mFreeBuffers.empty()) {
        found = mCore->mFreeBuffers.front();
        mCore->mFreeBuffers.remove(found);
    }
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    if (found == BufferQueueCore::INVALID_BUFFER_SLOT) {
        BQ_LOGE("attachBuffer(P): could not find free buffer slot");
        return NO_MEMORY;
    }

    *outSlot = found;
    ATRACE_BUFFER_INDEX(*outSlot);
    BQ_LOGV("attachBuffer(C): returning slot %d", *outSlot);

    mSlots[*outSlot].mGraphicBuffer = buffer;
    mSlots[*outSlot].mBufferState = BufferSlot::ACQUIRED;
    mSlots[*outSlot].mAttachedByConsumer = true;
    mSlots[*outSlot].mNeedsCleanupOnRelease = false;
    mSlots[*outSlot].mFence = Fence::NO_FENCE;
    mSlots[*outSlot].mFrameNumber = 0;

Dan Stoza's avatar
Dan Stoza committed
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    // mAcquireCalled tells BufferQueue that it doesn't need to send a valid
    // GraphicBuffer pointer on the next acquireBuffer call, which decreases
    // Binder traffic by not un/flattening the GraphicBuffer. However, it
    // requires that the consumer maintain a cached copy of the slot <--> buffer
    // mappings, which is why the consumer doesn't need the valid pointer on
    // acquire.
    //
    // The StreamSplitter is one of the primary users of the attach/detach
    // logic, and while it is running, all buffers it acquires are immediately
    // detached, and all buffers it eventually releases are ones that were
    // attached (as opposed to having been obtained from acquireBuffer), so it
    // doesn't make sense to maintain the slot/buffer mappings, which would
    // become invalid for every buffer during detach/attach. By setting this to
    // false, the valid GraphicBuffer pointer will always be sent with acquire
    // for attached buffers.
    mSlots[*outSlot].mAcquireCalled = false;

296 297
    mCore->validateConsistencyLocked();

298 299 300
    return NO_ERROR;
}

301 302 303 304 305 306
status_t BufferQueueConsumer::releaseBuffer(int slot, uint64_t frameNumber,
        const sp<Fence>& releaseFence, EGLDisplay eglDisplay,
        EGLSyncKHR eglFence) {
    ATRACE_CALL();
    ATRACE_BUFFER_INDEX(slot);

307 308
    if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS ||
            releaseFence == NULL) {
309 310 311
        return BAD_VALUE;
    }

312 313 314
    sp<IProducerListener> listener;
    { // Autolock scope
        Mutex::Autolock lock(mCore->mMutex);
315

316 317 318 319 320
        // If the frame number has changed because the buffer has been reallocated,
        // we can ignore this releaseBuffer for the old buffer
        if (frameNumber != mSlots[slot].mFrameNumber) {
            return STALE_BUFFER_SLOT;
        }
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
        // Make sure this buffer hasn't been queued while acquired by the consumer
        BufferQueueCore::Fifo::iterator current(mCore->mQueue.begin());
        while (current != mCore->mQueue.end()) {
            if (current->mSlot == slot) {
                BQ_LOGE("releaseBuffer: buffer slot %d pending release is "
                        "currently queued", slot);
                return BAD_VALUE;
            }
            ++current;
        }

        if (mSlots[slot].mBufferState == BufferSlot::ACQUIRED) {
            mSlots[slot].mEglDisplay = eglDisplay;
            mSlots[slot].mEglFence = eglFence;
            mSlots[slot].mFence = releaseFence;
            mSlots[slot].mBufferState = BufferSlot::FREE;
338
            mCore->mFreeBuffers.push_back(slot);
339 340 341 342 343 344 345 346 347 348
            listener = mCore->mConnectedProducerListener;
            BQ_LOGV("releaseBuffer: releasing slot %d", slot);
        } else if (mSlots[slot].mNeedsCleanupOnRelease) {
            BQ_LOGV("releaseBuffer: releasing a stale buffer slot %d "
                    "(state = %d)", slot, mSlots[slot].mBufferState);
            mSlots[slot].mNeedsCleanupOnRelease = false;
            return STALE_BUFFER_SLOT;
        } else {
            BQ_LOGV("releaseBuffer: attempted to release buffer slot %d "
                    "but its state was %d", slot, mSlots[slot].mBufferState);
349
            return BAD_VALUE;
350 351
        }

352
        mCore->mDequeueCondition.broadcast();
353
        mCore->validateConsistencyLocked();
354
    } // Autolock scope
355

356 357 358 359
    // Call back without lock held
    if (listener != NULL) {
        listener->onBufferReleased();
    }
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

    return NO_ERROR;
}

status_t BufferQueueConsumer::connect(
        const sp<IConsumerListener>& consumerListener, bool controlledByApp) {
    ATRACE_CALL();

    if (consumerListener == NULL) {
        BQ_LOGE("connect(C): consumerListener may not be NULL");
        return BAD_VALUE;
    }

    BQ_LOGV("connect(C): controlledByApp=%s",
            controlledByApp ? "true" : "false");

    Mutex::Autolock lock(mCore->mMutex);

    if (mCore->mIsAbandoned) {
        BQ_LOGE("connect(C): BufferQueue has been abandoned");
        return NO_INIT;
    }

    mCore->mConsumerListener = consumerListener;
    mCore->mConsumerControlledByApp = controlledByApp;

    return NO_ERROR;
}

status_t BufferQueueConsumer::disconnect() {
    ATRACE_CALL();

    BQ_LOGV("disconnect(C)");

    Mutex::Autolock lock(mCore->mMutex);

    if (mCore->mConsumerListener == NULL) {
        BQ_LOGE("disconnect(C): no consumer is connected");
398
        return BAD_VALUE;
399 400 401 402 403 404 405 406 407 408
    }

    mCore->mIsAbandoned = true;
    mCore->mConsumerListener = NULL;
    mCore->mQueue.clear();
    mCore->freeAllBuffersLocked();
    mCore->mDequeueCondition.broadcast();
    return NO_ERROR;
}

409
status_t BufferQueueConsumer::getReleasedBuffers(uint64_t *outSlotMask) {
410 411 412 413 414 415 416 417 418 419 420 421 422 423
    ATRACE_CALL();

    if (outSlotMask == NULL) {
        BQ_LOGE("getReleasedBuffers: outSlotMask may not be NULL");
        return BAD_VALUE;
    }

    Mutex::Autolock lock(mCore->mMutex);

    if (mCore->mIsAbandoned) {
        BQ_LOGE("getReleasedBuffers: BufferQueue has been abandoned");
        return NO_INIT;
    }

424
    uint64_t mask = 0;
425
    for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
426
        if (!mSlots[s].mAcquireCalled) {
427
            mask |= (1ULL << s);
428 429 430 431 432 433 434 435 436
        }
    }

    // Remove from the mask queued buffers for which acquire has been called,
    // since the consumer will not receive their buffer addresses and so must
    // retain their cached information
    BufferQueueCore::Fifo::iterator current(mCore->mQueue.begin());
    while (current != mCore->mQueue.end()) {
        if (current->mAcquireCalled) {
437
            mask &= ~(1ULL << current->mSlot);
438 439 440 441
        }
        ++current;
    }

442
    BQ_LOGV("getReleasedBuffers: returning mask %#" PRIx64, mask);
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    *outSlotMask = mask;
    return NO_ERROR;
}

status_t BufferQueueConsumer::setDefaultBufferSize(uint32_t width,
        uint32_t height) {
    ATRACE_CALL();

    if (width == 0 || height == 0) {
        BQ_LOGV("setDefaultBufferSize: dimensions cannot be 0 (width=%u "
                "height=%u)", width, height);
        return BAD_VALUE;
    }

    BQ_LOGV("setDefaultBufferSize: width=%u height=%u", width, height);

    Mutex::Autolock lock(mCore->mMutex);
    mCore->mDefaultWidth = width;
    mCore->mDefaultHeight = height;
    return NO_ERROR;
}

status_t BufferQueueConsumer::setDefaultMaxBufferCount(int bufferCount) {
    ATRACE_CALL();
    Mutex::Autolock lock(mCore->mMutex);
    return mCore->setDefaultMaxBufferCountLocked(bufferCount);
}

status_t BufferQueueConsumer::disableAsyncBuffer() {
    ATRACE_CALL();

    Mutex::Autolock lock(mCore->mMutex);

    if (mCore->mConsumerListener != NULL) {
        BQ_LOGE("disableAsyncBuffer: consumer already connected");
        return INVALID_OPERATION;
    }

    BQ_LOGV("disableAsyncBuffer");
    mCore->mUseAsyncBuffer = false;
    return NO_ERROR;
}

status_t BufferQueueConsumer::setMaxAcquiredBufferCount(
        int maxAcquiredBuffers) {
    ATRACE_CALL();

    if (maxAcquiredBuffers < 1 ||
            maxAcquiredBuffers > BufferQueueCore::MAX_MAX_ACQUIRED_BUFFERS) {
        BQ_LOGE("setMaxAcquiredBufferCount: invalid count %d",
                maxAcquiredBuffers);
        return BAD_VALUE;
    }

    Mutex::Autolock lock(mCore->mMutex);

    if (mCore->mConnectedApi != BufferQueueCore::NO_CONNECTED_API) {
        BQ_LOGE("setMaxAcquiredBufferCount: producer is already connected");
        return INVALID_OPERATION;
    }

    BQ_LOGV("setMaxAcquiredBufferCount: %d", maxAcquiredBuffers);
    mCore->mMaxAcquiredBufferCount = maxAcquiredBuffers;
    return NO_ERROR;
}

void BufferQueueConsumer::setConsumerName(const String8& name) {
    ATRACE_CALL();
    BQ_LOGV("setConsumerName: '%s'", name.string());
    Mutex::Autolock lock(mCore->mMutex);
    mCore->mConsumerName = name;
    mConsumerName = name;
}

517
status_t BufferQueueConsumer::setDefaultBufferFormat(PixelFormat defaultFormat) {
518 519 520 521 522 523 524
    ATRACE_CALL();
    BQ_LOGV("setDefaultBufferFormat: %u", defaultFormat);
    Mutex::Autolock lock(mCore->mMutex);
    mCore->mDefaultBufferFormat = defaultFormat;
    return NO_ERROR;
}

525 526 527 528 529 530 531 532 533
status_t BufferQueueConsumer::setDefaultBufferDataSpace(
        android_dataspace defaultDataSpace) {
    ATRACE_CALL();
    BQ_LOGV("setDefaultBufferDataSpace: %u", defaultDataSpace);
    Mutex::Autolock lock(mCore->mMutex);
    mCore->mDefaultBufferDataSpace = defaultDataSpace;
    return NO_ERROR;
}

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
status_t BufferQueueConsumer::setConsumerUsageBits(uint32_t usage) {
    ATRACE_CALL();
    BQ_LOGV("setConsumerUsageBits: %#x", usage);
    Mutex::Autolock lock(mCore->mMutex);
    mCore->mConsumerUsageBits = usage;
    return NO_ERROR;
}

status_t BufferQueueConsumer::setTransformHint(uint32_t hint) {
    ATRACE_CALL();
    BQ_LOGV("setTransformHint: %#x", hint);
    Mutex::Autolock lock(mCore->mMutex);
    mCore->mTransformHint = hint;
    return NO_ERROR;
}

550 551 552 553
sp<NativeHandle> BufferQueueConsumer::getSidebandStream() const {
    return mCore->mSidebandStream;
}

554 555 556 557 558 559 560 561
void BufferQueueConsumer::setShadowQueueSize(size_t size) {
    ATRACE_CALL();
    BQ_LOGV("setShadowQueueSize: %zu", size);
    Mutex::Autolock lock(mCore->mMutex);
    mCore->mConsumerHasShadowQueue = true;
    mCore->mConsumerShadowQueueSize = size;
}

562 563 564 565 566
void BufferQueueConsumer::dump(String8& result, const char* prefix) const {
    mCore->dump(result, prefix);
}

} // namespace android