• Christopher Tate's avatar
    Full local backup infrastructure · 4a627c71
    Christopher Tate authored
    This is the basic infrastructure for pulling a full(*) backup of the
    device's data over an adb(**) connection to the local device.  The
    basic process consists of these interacting pieces:
    
    1. The framework's BackupManagerService, which coordinates the
       collection of app data and routing to the destination.
    
    2. A new framework-provided BackupAgent implementation called
       FullBackupAgent, which is instantiated in the target applications'
       processes in turn, and knows how to emit a datastream that contains
       all of the app's saved data files.
    
    3. A new shell-level program called "bu" that is used to bridge from
       adb to the framework's Backup Manager.
    
    4. adb itself, which now knows how to use 'bu' to kick off a backup
       operation and pull the resulting data stream to the desktop host.
    
    5. A system-provided application that verifies with the user that
       an attempted backup/restore operation is in fact expected and to
       be allowed.
    
    The full agent implementation is not used during normal operation of
    the delta-based app-customized remote backup process.  Instead it's
    used during user-confirmed *full* backup of applications and all their
    data to a local destination, e.g. via the adb connection.
    
    The output format is 'tar'.  This makes it very easy for the end
    user to examine the resulting dataset, e.g. for purpose of extracting
    files for debug purposes; as well as making it easy to contemplate
    adding things like a direct gzip stage to the data pipeline during
    backup/restore.  It also makes it convenient to construct and maintain
    synthetic backup datasets for testing purposes.
    
    Within the tar format, certain artificial conventions are used.
    All files are stored within top-level directories according to
    their semantic origin:
    
    apps/pkgname/a/  : Application .apk file itself
    apps/pkgname/obb/: The application's associated .obb containers
    apps/pkgname/f/  : The subtree rooted at the getFilesDir() location
    apps/pkgname/db/ : The subtree rooted at the getDatabasePath() parent
    apps/pkgname/sp/ : The subtree rooted at the getSharedPrefsFile() parent
    apps/pkgname/r/  : Files stored relative to the root of the app's file tree
    apps/pkgname/c/  : Reserved for the app's getCacheDir() tree; not stored.
    
    For each package, the first entry in the tar stream is a file called
    "_manifest", nominally rooted at apps/pkgname.  This file contains some
    metadata about the package whose data is stored in the archive.
    
    The contents of shared storage can optionally be included in the tar
    stream. It is placed in the synthetic location:
    
    shared/...
    
    uid/gid are ignored; app uids are assigned at install time, and the
    app's data is handled from within its own execution environment, so
    will automatically have the app's correct uid.
    
    Forward-locked .apk files are never backed up.  System-partition
    .apk files are not backed up unless they have been overridden by a
    post-factory upgrade, in which case the current .apk *is* backed up --
    i.e. the .apk that matches the on-disk data.  The manifest preceding
    each application's portion of the tar stream provides version numbers
    and signature blocks for version checking, as well as an indication
    of whether the restore logic should expect to install the .apk before
    extracting the data.
    
    System packages can designate their own full backup agents.  This is
    to manage things like the settings provider which (a) cannot be shut
    down on the fly in order to do a clean snapshot of their file trees,
    and (b) manage data that is not only irrelevant but actively hostile
    to non-identical devices -- CDMA telephony settings would seriously
    mess up a GSM device if emplaced there blind, for example.
    
    When a full backup or restore is initiated from adb, the system will
    present a confirmation UI that the user must explicitly respond to
    within a short [~ 30 seconds] timeout.  This is to avoid the
    possibility of malicious desktop-side software secretly grabbing a copy
    of all the user's data for nefarious purposes.
    
    (*) The backup is not strictly a full mirror.  In particular, the
        settings database is not cloned; it is handled the same way that
        it is in cloud backup/restore.  This is because some settings
        are actively destructive if cloned onto a different (or
        especially a different-model) device: telephony settings and
        AndroidID are good examples of this.
    
    (**) On the framework side it doesn't care that it's adb; it just
        sends the tar stream to a file descriptor.  This can easily be
        retargeted around whatever transport we might decide to use
        in the future.
    
    KNOWN ISSUES:
    
    * the security UI is desperately ugly; no proper designs have yet
      been done for it
    * restore is not yet implemented
    * shared storage backup is not yet implemented
    * symlinks aren't yet handled, though some infrastructure for
      dealing with them has been put in place.
    
    Change-Id: Ia8347611e23b398af36ea22c36dff0a276b1ce91
    4a627c71
Android.mk 27.2 KB