tile_manager.cc 56.1 KB
Newer Older
1 2 3 4 5 6 7
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cc/resources/tile_manager.h"

#include <algorithm>
8
#include <limits>
9
#include <string>
10 11 12 13 14

#include "base/bind.h"
#include "base/json/json_writer.h"
#include "base/logging.h"
#include "base/metrics/histogram.h"
15
#include "cc/debug/devtools_instrumentation.h"
16
#include "cc/debug/frame_viewer_instrumentation.h"
17
#include "cc/debug/traced_value.h"
18
#include "cc/layers/picture_layer_impl.h"
19
#include "cc/resources/raster_worker_pool.h"
20
#include "cc/resources/tile.h"
21 22 23
#include "skia/ext/paint_simplifier.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkPixelRef.h"
24
#include "ui/gfx/rect_conversions.h"
25 26 27 28

namespace cc {
namespace {

29 30 31 32
// Flag to indicate whether we should try and detect that
// a tile is of solid color.
const bool kUseColorEstimator = true;

33
class RasterTaskImpl : public RasterTask {
34
 public:
35
  RasterTaskImpl(
36 37 38 39 40 41 42 43 44 45 46 47
      const Resource* resource,
      PicturePileImpl* picture_pile,
      const gfx::Rect& content_rect,
      float contents_scale,
      RasterMode raster_mode,
      TileResolution tile_resolution,
      int layer_id,
      const void* tile_id,
      int source_frame_number,
      bool analyze_picture,
      RenderingStatsInstrumentation* rendering_stats,
      const base::Callback<void(const PicturePileImpl::Analysis&, bool)>& reply,
48 49
      ImageDecodeTask::Vector* dependencies)
      : RasterTask(resource, dependencies),
50 51 52 53 54 55 56 57 58 59 60 61 62
        picture_pile_(picture_pile),
        content_rect_(content_rect),
        contents_scale_(contents_scale),
        raster_mode_(raster_mode),
        tile_resolution_(tile_resolution),
        layer_id_(layer_id),
        tile_id_(tile_id),
        source_frame_number_(source_frame_number),
        analyze_picture_(analyze_picture),
        rendering_stats_(rendering_stats),
        reply_(reply),
        canvas_(NULL) {}

63
  // Overridden from Task:
64
  virtual void RunOnWorkerThread() OVERRIDE {
65
    TRACE_EVENT0("cc", "RasterizerTaskImpl::RunOnWorkerThread");
66 67 68 69 70 71 72 73

    DCHECK(picture_pile_);
    if (canvas_) {
      AnalyzeAndRaster(picture_pile_->GetCloneForDrawingOnThread(
          RasterWorkerPool::GetPictureCloneIndexForCurrentThread()));
    }
  }

74 75
  // Overridden from RasterizerTask:
  virtual void ScheduleOnOriginThread(RasterizerTaskClient* client) OVERRIDE {
76
    DCHECK(!canvas_);
77
    canvas_ = client->AcquireCanvasForRaster(this);
78
  }
79
  virtual void CompleteOnOriginThread(RasterizerTaskClient* client) OVERRIDE {
80
    canvas_ = NULL;
81
    client->ReleaseCanvasForRaster(this);
82 83 84 85 86 87 88
  }
  virtual void RunReplyOnOriginThread() OVERRIDE {
    DCHECK(!canvas_);
    reply_.Run(analysis_, !HasFinishedRunning());
  }

 protected:
89
  virtual ~RasterTaskImpl() { DCHECK(!canvas_); }
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

 private:
  void AnalyzeAndRaster(PicturePileImpl* picture_pile) {
    DCHECK(picture_pile);
    DCHECK(canvas_);

    if (analyze_picture_) {
      Analyze(picture_pile);
      if (analysis_.is_solid_color)
        return;
    }

    Raster(picture_pile);
  }

  void Analyze(PicturePileImpl* picture_pile) {
106 107
    frame_viewer_instrumentation::ScopedAnalyzeTask analyze_task(
        tile_id_, tile_resolution_, source_frame_number_, layer_id_);
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

    DCHECK(picture_pile);

    picture_pile->AnalyzeInRect(
        content_rect_, contents_scale_, &analysis_, rendering_stats_);

    // Record the solid color prediction.
    UMA_HISTOGRAM_BOOLEAN("Renderer4.SolidColorTilesAnalyzed",
                          analysis_.is_solid_color);

    // Clear the flag if we're not using the estimator.
    analysis_.is_solid_color &= kUseColorEstimator;
  }

  void Raster(PicturePileImpl* picture_pile) {
123 124 125 126 127 128 129
    frame_viewer_instrumentation::ScopedRasterTask raster_task(
        tile_id_,
        tile_resolution_,
        source_frame_number_,
        layer_id_,
        raster_mode_);
    devtools_instrumentation::ScopedLayerTask layer_task(
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        devtools_instrumentation::kRasterTask, layer_id_);

    skia::RefPtr<SkDrawFilter> draw_filter;
    switch (raster_mode_) {
      case LOW_QUALITY_RASTER_MODE:
        draw_filter = skia::AdoptRef(new skia::PaintSimplifier);
        break;
      case HIGH_QUALITY_RASTER_MODE:
        break;
      case NUM_RASTER_MODES:
      default:
        NOTREACHED();
    }
    canvas_->setDrawFilter(draw_filter.get());

    base::TimeDelta prev_rasterize_time =
        rendering_stats_->impl_thread_rendering_stats().rasterize_time;

    // Only record rasterization time for highres tiles, because
    // lowres tiles are not required for activation and therefore
    // introduce noise in the measurement (sometimes they get rasterized
    // before we draw and sometimes they aren't)
    RenderingStatsInstrumentation* stats =
        tile_resolution_ == HIGH_RESOLUTION ? rendering_stats_ : NULL;
    DCHECK(picture_pile);
    picture_pile->RasterToBitmap(
        canvas_, content_rect_, contents_scale_, stats);

    if (rendering_stats_->record_rendering_stats()) {
      base::TimeDelta current_rasterize_time =
          rendering_stats_->impl_thread_rendering_stats().rasterize_time;
      HISTOGRAM_CUSTOM_COUNTS(
          "Renderer4.PictureRasterTimeUS",
          (current_rasterize_time - prev_rasterize_time).InMicroseconds(),
          0,
          100000,
          100);
    }
  }

  PicturePileImpl::Analysis analysis_;
  scoped_refptr<PicturePileImpl> picture_pile_;
  gfx::Rect content_rect_;
  float contents_scale_;
  RasterMode raster_mode_;
  TileResolution tile_resolution_;
  int layer_id_;
  const void* tile_id_;
  int source_frame_number_;
  bool analyze_picture_;
  RenderingStatsInstrumentation* rendering_stats_;
  const base::Callback<void(const PicturePileImpl::Analysis&, bool)> reply_;
  SkCanvas* canvas_;

184
  DISALLOW_COPY_AND_ASSIGN(RasterTaskImpl);
185 186
};

187
class ImageDecodeTaskImpl : public ImageDecodeTask {
188
 public:
189 190 191 192
  ImageDecodeTaskImpl(SkPixelRef* pixel_ref,
                      int layer_id,
                      RenderingStatsInstrumentation* rendering_stats,
                      const base::Callback<void(bool was_canceled)>& reply)
193 194 195 196 197
      : pixel_ref_(skia::SharePtr(pixel_ref)),
        layer_id_(layer_id),
        rendering_stats_(rendering_stats),
        reply_(reply) {}

198
  // Overridden from Task:
199
  virtual void RunOnWorkerThread() OVERRIDE {
200
    TRACE_EVENT0("cc", "ImageDecodeTaskImpl::RunOnWorkerThread");
201 202 203 204 205 206

    devtools_instrumentation::ScopedImageDecodeTask image_decode_task(
        pixel_ref_.get());
    // This will cause the image referred to by pixel ref to be decoded.
    pixel_ref_->lockPixels();
    pixel_ref_->unlockPixels();
207 208
  }

209 210 211
  // Overridden from RasterizerTask:
  virtual void ScheduleOnOriginThread(RasterizerTaskClient* client) OVERRIDE {}
  virtual void CompleteOnOriginThread(RasterizerTaskClient* client) OVERRIDE {}
212 213 214 215 216
  virtual void RunReplyOnOriginThread() OVERRIDE {
    reply_.Run(!HasFinishedRunning());
  }

 protected:
217
  virtual ~ImageDecodeTaskImpl() {}
218 219 220 221 222 223 224

 private:
  skia::RefPtr<SkPixelRef> pixel_ref_;
  int layer_id_;
  RenderingStatsInstrumentation* rendering_stats_;
  const base::Callback<void(bool was_canceled)> reply_;

225
  DISALLOW_COPY_AND_ASSIGN(ImageDecodeTaskImpl);
226 227
};

228 229
const size_t kScheduledRasterTasksLimit = 32u;

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
// Memory limit policy works by mapping some bin states to the NEVER bin.
const ManagedTileBin kBinPolicyMap[NUM_TILE_MEMORY_LIMIT_POLICIES][NUM_BINS] = {
    // [ALLOW_NOTHING]
    {NEVER_BIN,  // [NOW_AND_READY_TO_DRAW_BIN]
     NEVER_BIN,  // [NOW_BIN]
     NEVER_BIN,  // [SOON_BIN]
     NEVER_BIN,  // [EVENTUALLY_AND_ACTIVE_BIN]
     NEVER_BIN,  // [EVENTUALLY_BIN]
     NEVER_BIN,  // [AT_LAST_AND_ACTIVE_BIN]
     NEVER_BIN,  // [AT_LAST_BIN]
     NEVER_BIN   // [NEVER_BIN]
    },
    // [ALLOW_ABSOLUTE_MINIMUM]
    {NOW_AND_READY_TO_DRAW_BIN,  // [NOW_AND_READY_TO_DRAW_BIN]
     NOW_BIN,                    // [NOW_BIN]
     NEVER_BIN,                  // [SOON_BIN]
     NEVER_BIN,                  // [EVENTUALLY_AND_ACTIVE_BIN]
     NEVER_BIN,                  // [EVENTUALLY_BIN]
     NEVER_BIN,                  // [AT_LAST_AND_ACTIVE_BIN]
     NEVER_BIN,                  // [AT_LAST_BIN]
     NEVER_BIN                   // [NEVER_BIN]
    },
    // [ALLOW_PREPAINT_ONLY]
    {NOW_AND_READY_TO_DRAW_BIN,  // [NOW_AND_READY_TO_DRAW_BIN]
     NOW_BIN,                    // [NOW_BIN]
     SOON_BIN,                   // [SOON_BIN]
     NEVER_BIN,                  // [EVENTUALLY_AND_ACTIVE_BIN]
     NEVER_BIN,                  // [EVENTUALLY_BIN]
     NEVER_BIN,                  // [AT_LAST_AND_ACTIVE_BIN]
     NEVER_BIN,                  // [AT_LAST_BIN]
     NEVER_BIN                   // [NEVER_BIN]
    },
    // [ALLOW_ANYTHING]
    {NOW_AND_READY_TO_DRAW_BIN,  // [NOW_AND_READY_TO_DRAW_BIN]
     NOW_BIN,                    // [NOW_BIN]
     SOON_BIN,                   // [SOON_BIN]
     EVENTUALLY_AND_ACTIVE_BIN,  // [EVENTUALLY_AND_ACTIVE_BIN]
     EVENTUALLY_BIN,             // [EVENTUALLY_BIN]
     AT_LAST_AND_ACTIVE_BIN,     // [AT_LAST_AND_ACTIVE_BIN]
     AT_LAST_BIN,                // [AT_LAST_BIN]
     NEVER_BIN                   // [NEVER_BIN]
    }};

// Ready to draw works by mapping NOW_BIN to NOW_AND_READY_TO_DRAW_BIN.
const ManagedTileBin kBinReadyToDrawMap[2][NUM_BINS] = {
    // Not ready
    {NOW_AND_READY_TO_DRAW_BIN,  // [NOW_AND_READY_TO_DRAW_BIN]
     NOW_BIN,                    // [NOW_BIN]
     SOON_BIN,                   // [SOON_BIN]
     EVENTUALLY_AND_ACTIVE_BIN,  // [EVENTUALLY_AND_ACTIVE_BIN]
     EVENTUALLY_BIN,             // [EVENTUALLY_BIN]
     AT_LAST_AND_ACTIVE_BIN,     // [AT_LAST_AND_ACTIVE_BIN]
     AT_LAST_BIN,                // [AT_LAST_BIN]
     NEVER_BIN                   // [NEVER_BIN]
    },
    // Ready
    {NOW_AND_READY_TO_DRAW_BIN,  // [NOW_AND_READY_TO_DRAW_BIN]
     NOW_AND_READY_TO_DRAW_BIN,  // [NOW_BIN]
     SOON_BIN,                   // [SOON_BIN]
     EVENTUALLY_AND_ACTIVE_BIN,  // [EVENTUALLY_AND_ACTIVE_BIN]
     EVENTUALLY_BIN,             // [EVENTUALLY_BIN]
     AT_LAST_AND_ACTIVE_BIN,     // [AT_LAST_AND_ACTIVE_BIN]
     AT_LAST_BIN,                // [AT_LAST_BIN]
     NEVER_BIN                   // [NEVER_BIN]
    }};

// Active works by mapping some bin stats to equivalent _ACTIVE_BIN state.
const ManagedTileBin kBinIsActiveMap[2][NUM_BINS] = {
    // Inactive
    {NOW_AND_READY_TO_DRAW_BIN,  // [NOW_AND_READY_TO_DRAW_BIN]
     NOW_BIN,                    // [NOW_BIN]
     SOON_BIN,                   // [SOON_BIN]
     EVENTUALLY_AND_ACTIVE_BIN,  // [EVENTUALLY_AND_ACTIVE_BIN]
     EVENTUALLY_BIN,             // [EVENTUALLY_BIN]
     AT_LAST_AND_ACTIVE_BIN,     // [AT_LAST_AND_ACTIVE_BIN]
     AT_LAST_BIN,                // [AT_LAST_BIN]
     NEVER_BIN                   // [NEVER_BIN]
    },
    // Active
    {NOW_AND_READY_TO_DRAW_BIN,  // [NOW_AND_READY_TO_DRAW_BIN]
     NOW_BIN,                    // [NOW_BIN]
     SOON_BIN,                   // [SOON_BIN]
     EVENTUALLY_AND_ACTIVE_BIN,  // [EVENTUALLY_AND_ACTIVE_BIN]
     EVENTUALLY_AND_ACTIVE_BIN,  // [EVENTUALLY_BIN]
     AT_LAST_AND_ACTIVE_BIN,     // [AT_LAST_AND_ACTIVE_BIN]
     AT_LAST_AND_ACTIVE_BIN,     // [AT_LAST_BIN]
     NEVER_BIN                   // [NEVER_BIN]
    }};

// Determine bin based on three categories of tiles: things we need now,
// things we need soon, and eventually.
inline ManagedTileBin BinFromTilePriority(const TilePriority& prio) {
  if (prio.priority_bin == TilePriority::NOW)
    return NOW_BIN;

  if (prio.priority_bin == TilePriority::SOON)
    return SOON_BIN;

  if (prio.distance_to_visible == std::numeric_limits<float>::infinity())
    return NEVER_BIN;

  return EVENTUALLY_BIN;
}

334 335
}  // namespace

336
RasterTaskCompletionStats::RasterTaskCompletionStats()
337
    : completed_count(0u), canceled_count(0u) {}
338 339 340 341 342 343 344 345 346

scoped_ptr<base::Value> RasterTaskCompletionStatsAsValue(
    const RasterTaskCompletionStats& stats) {
  scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
  state->SetInteger("completed_count", stats.completed_count);
  state->SetInteger("canceled_count", stats.canceled_count);
  return state.PassAs<base::Value>();
}

347 348 349
// static
scoped_ptr<TileManager> TileManager::Create(
    TileManagerClient* client,
350
    base::SequencedTaskRunner* task_runner,
351 352
    ResourcePool* resource_pool,
    Rasterizer* rasterizer,
353 354
    RenderingStatsInstrumentation* rendering_stats_instrumentation) {
  return make_scoped_ptr(new TileManager(client,
355
                                         task_runner,
356 357
                                         resource_pool,
                                         rasterizer,
358
                                         rendering_stats_instrumentation));
359 360
}

361 362
TileManager::TileManager(
    TileManagerClient* client,
363
    base::SequencedTaskRunner* task_runner,
364 365
    ResourcePool* resource_pool,
    Rasterizer* rasterizer,
366
    RenderingStatsInstrumentation* rendering_stats_instrumentation)
367
    : client_(client),
368
      task_runner_(task_runner),
369
      resource_pool_(resource_pool),
370
      rasterizer_(rasterizer),
371 372 373 374 375 376
      prioritized_tiles_dirty_(false),
      all_tiles_that_need_to_be_rasterized_have_memory_(true),
      all_tiles_required_for_activation_have_memory_(true),
      bytes_releasable_(0),
      resources_releasable_(0),
      ever_exceeded_memory_budget_(false),
377
      rendering_stats_instrumentation_(rendering_stats_instrumentation),
378
      did_initialize_visible_tile_(false),
379
      did_check_for_completed_tasks_since_last_schedule_tasks_(true),
380 381 382 383 384
      ready_to_activate_check_notifier_(
          task_runner_,
          base::Bind(&TileManager::CheckIfReadyToActivate,
                     base::Unretained(this))) {
  rasterizer_->SetClient(this);
385 386 387 388 389 390
}

TileManager::~TileManager() {
  // Reset global state and manage. This should cause
  // our memory usage to drop to zero.
  global_state_ = GlobalStateThatImpactsTilePriority();
391

392
  CleanUpReleasedTiles();
393 394
  DCHECK_EQ(0u, tiles_.size());

395 396
  RasterTaskQueue empty;
  rasterizer_->ScheduleTasks(&empty);
397
  orphan_raster_tasks_.clear();
398

399 400
  // This should finish all pending tasks and release any uninitialized
  // resources.
401 402
  rasterizer_->Shutdown();
  rasterizer_->CheckForCompletedTasks();
403 404 405

  DCHECK_EQ(0u, bytes_releasable_);
  DCHECK_EQ(0u, resources_releasable_);
406 407
}

408
void TileManager::Release(Tile* tile) {
409
  prioritized_tiles_dirty_ = true;
410
  released_tiles_.push_back(tile);
411 412
}

413 414 415 416
void TileManager::DidChangeTilePriority(Tile* tile) {
  prioritized_tiles_dirty_ = true;
}

417 418 419
bool TileManager::ShouldForceTasksRequiredForActivationToComplete() const {
  return global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY;
}
420

421 422 423 424 425
void TileManager::CleanUpReleasedTiles() {
  for (std::vector<Tile*>::iterator it = released_tiles_.begin();
       it != released_tiles_.end();
       ++it) {
    Tile* tile = *it;
426
    ManagedTileState& mts = tile->managed_state();
427

428 429 430 431
    for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
      FreeResourceForTile(tile, static_cast<RasterMode>(mode));
      orphan_raster_tasks_.push_back(mts.tile_versions[mode].raster_task_);
    }
432

433 434
    DCHECK(tiles_.find(tile->id()) != tiles_.end());
    tiles_.erase(tile->id());
435

436 437 438 439 440 441 442
    LayerCountMap::iterator layer_it =
        used_layer_counts_.find(tile->layer_id());
    DCHECK_GT(layer_it->second, 0);
    if (--layer_it->second == 0) {
      used_layer_counts_.erase(layer_it);
      image_decode_tasks_.erase(tile->layer_id());
    }
443

444 445
    delete tile;
  }
446

447
  released_tiles_.clear();
448 449
}

450 451 452 453 454 455 456 457 458 459 460
void TileManager::UpdatePrioritizedTileSetIfNeeded() {
  if (!prioritized_tiles_dirty_)
    return;

  CleanUpReleasedTiles();

  prioritized_tiles_.Clear();
  GetTilesWithAssignedBins(&prioritized_tiles_);
  prioritized_tiles_dirty_ = false;
}

461 462 463
void TileManager::DidFinishRunningTasks() {
  TRACE_EVENT0("cc", "TileManager::DidFinishRunningTasks");

464 465 466
  bool memory_usage_above_limit = resource_pool_->total_memory_usage_bytes() >
                                  global_state_.soft_memory_limit_in_bytes;

467 468
  // When OOM, keep re-assigning memory until we reach a steady state
  // where top-priority tiles are initialized.
469
  if (all_tiles_that_need_to_be_rasterized_have_memory_ &&
470
      !memory_usage_above_limit)
471 472
    return;

473
  rasterizer_->CheckForCompletedTasks();
474
  did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
475

476
  TileVector tiles_that_need_to_be_rasterized;
477 478
  AssignGpuMemoryToTiles(&prioritized_tiles_,
                         &tiles_that_need_to_be_rasterized);
479

480
  // |tiles_that_need_to_be_rasterized| will be empty when we reach a
481
  // steady memory state. Keep scheduling tasks until we reach this state.
482 483
  if (!tiles_that_need_to_be_rasterized.empty()) {
    ScheduleTasks(tiles_that_need_to_be_rasterized);
484 485 486
    return;
  }

487 488
  resource_pool_->ReduceResourceUsage();

489 490 491 492 493 494
  // We don't reserve memory for required-for-activation tiles during
  // accelerated gestures, so we just postpone activation when we don't
  // have these tiles, and activate after the accelerated gesture.
  bool allow_rasterize_on_demand =
      global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY;

495 496 497 498 499
  // Use on-demand raster for any required-for-activation tiles that have not
  // been been assigned memory after reaching a steady memory state. This
  // ensures that we activate even when OOM.
  for (TileMap::iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
    Tile* tile = it->second;
500
    ManagedTileState& mts = tile->managed_state();
501 502 503
    ManagedTileState::TileVersion& tile_version =
        mts.tile_versions[mts.raster_mode];

504 505 506 507
    if (tile->required_for_activation() && !tile_version.IsReadyToDraw()) {
      // If we can't raster on demand, give up early (and don't activate).
      if (!allow_rasterize_on_demand)
        return;
508 509 510

      tile_version.set_rasterize_on_demand();
      client_->NotifyTileStateChanged(tile);
511
    }
512 513
  }

514 515
  DCHECK(IsReadyToActivate());
  ready_to_activate_check_notifier_.Schedule();
516 517
}

518
void TileManager::DidFinishRunningTasksRequiredForActivation() {
519 520 521 522 523 524 525 526
  // This is only a true indication that all tiles required for
  // activation are initialized when no tiles are OOM. We need to
  // wait for DidFinishRunningTasks() to be called, try to re-assign
  // memory and in worst case use on-demand raster when tiles
  // required for activation are OOM.
  if (!all_tiles_required_for_activation_have_memory_)
    return;

527
  ready_to_activate_check_notifier_.Schedule();
528 529
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
void TileManager::GetTilesWithAssignedBins(PrioritizedTileSet* tiles) {
  TRACE_EVENT0("cc", "TileManager::GetTilesWithAssignedBins");

  const TileMemoryLimitPolicy memory_policy = global_state_.memory_limit_policy;
  const TreePriority tree_priority = global_state_.tree_priority;

  // For each tree, bin into different categories of tiles.
  for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
    Tile* tile = it->second;
    ManagedTileState& mts = tile->managed_state();

    const ManagedTileState::TileVersion& tile_version =
        tile->GetTileVersionForDrawing();
    bool tile_is_ready_to_draw = tile_version.IsReadyToDraw();
    bool tile_is_active = tile_is_ready_to_draw ||
                          mts.tile_versions[mts.raster_mode].raster_task_;

    // Get the active priority and bin.
    TilePriority active_priority = tile->priority(ACTIVE_TREE);
    ManagedTileBin active_bin = BinFromTilePriority(active_priority);

    // Get the pending priority and bin.
    TilePriority pending_priority = tile->priority(PENDING_TREE);
    ManagedTileBin pending_bin = BinFromTilePriority(pending_priority);

    bool pending_is_low_res = pending_priority.resolution == LOW_RESOLUTION;
    bool pending_is_non_ideal =
        pending_priority.resolution == NON_IDEAL_RESOLUTION;
    bool active_is_non_ideal =
        active_priority.resolution == NON_IDEAL_RESOLUTION;

    // Adjust bin state based on if ready to draw.
    active_bin = kBinReadyToDrawMap[tile_is_ready_to_draw][active_bin];
    pending_bin = kBinReadyToDrawMap[tile_is_ready_to_draw][pending_bin];

    // Adjust bin state based on if active.
    active_bin = kBinIsActiveMap[tile_is_active][active_bin];
    pending_bin = kBinIsActiveMap[tile_is_active][pending_bin];

    // We never want to paint new non-ideal tiles, as we always have
    // a high-res tile covering that content (paint that instead).
    if (!tile_is_ready_to_draw && active_is_non_ideal)
      active_bin = NEVER_BIN;
    if (!tile_is_ready_to_draw && pending_is_non_ideal)
      pending_bin = NEVER_BIN;

    ManagedTileBin tree_bin[NUM_TREES];
    tree_bin[ACTIVE_TREE] = kBinPolicyMap[memory_policy][active_bin];
    tree_bin[PENDING_TREE] = kBinPolicyMap[memory_policy][pending_bin];

    // Adjust pending bin state for low res tiles. This prevents pending tree
    // low-res tiles from being initialized before high-res tiles.
    if (pending_is_low_res)
      tree_bin[PENDING_TREE] = std::max(tree_bin[PENDING_TREE], EVENTUALLY_BIN);

    TilePriority tile_priority;
    switch (tree_priority) {
      case SAME_PRIORITY_FOR_BOTH_TREES:
        mts.bin = std::min(tree_bin[ACTIVE_TREE], tree_bin[PENDING_TREE]);
        tile_priority = tile->combined_priority();
        break;
      case SMOOTHNESS_TAKES_PRIORITY:
        mts.bin = tree_bin[ACTIVE_TREE];
        tile_priority = active_priority;
        break;
      case NEW_CONTENT_TAKES_PRIORITY:
        mts.bin = tree_bin[PENDING_TREE];
        tile_priority = pending_priority;
        break;
    }

    // Bump up the priority if we determined it's NEVER_BIN on one tree,
    // but is still required on the other tree.
    bool is_in_never_bin_on_both_trees = tree_bin[ACTIVE_TREE] == NEVER_BIN &&
                                         tree_bin[PENDING_TREE] == NEVER_BIN;

    if (mts.bin == NEVER_BIN && !is_in_never_bin_on_both_trees)
      mts.bin = tile_is_active ? AT_LAST_AND_ACTIVE_BIN : AT_LAST_BIN;

    mts.resolution = tile_priority.resolution;
    mts.priority_bin = tile_priority.priority_bin;
    mts.distance_to_visible = tile_priority.distance_to_visible;
    mts.required_for_activation = tile_priority.required_for_activation;

    mts.visible_and_ready_to_draw =
        tree_bin[ACTIVE_TREE] == NOW_AND_READY_TO_DRAW_BIN;

    // Tiles that are required for activation shouldn't be in NEVER_BIN unless
    // smoothness takes priority or memory policy allows nothing to be
    // initialized.
    DCHECK(!mts.required_for_activation || mts.bin != NEVER_BIN ||
           tree_priority == SMOOTHNESS_TAKES_PRIORITY ||
           memory_policy == ALLOW_NOTHING);

    // If the tile is in NEVER_BIN and it does not have an active task, then we
    // can release the resources early. If it does have the task however, we
    // should keep it in the prioritized tile set to ensure that AssignGpuMemory
    // can visit it.
    if (mts.bin == NEVER_BIN &&
        !mts.tile_versions[mts.raster_mode].raster_task_) {
      FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile);
      continue;
    }

    // Insert the tile into a priority set.
    tiles->InsertTile(tile, mts.bin);
  }
}

639
void TileManager::ManageTiles(const GlobalStateThatImpactsTilePriority& state) {
640
  TRACE_EVENT0("cc", "TileManager::ManageTiles");
641

642 643 644 645 646
  // Update internal state.
  if (state != global_state_) {
    global_state_ = state;
    prioritized_tiles_dirty_ = true;
  }
647

648 649 650
  // We need to call CheckForCompletedTasks() once in-between each call
  // to ScheduleTasks() to prevent canceled tasks from being scheduled.
  if (!did_check_for_completed_tasks_since_last_schedule_tasks_) {
651
    rasterizer_->CheckForCompletedTasks();
652 653 654
    did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
  }

655
  UpdatePrioritizedTileSetIfNeeded();
656

657
  TileVector tiles_that_need_to_be_rasterized;
658 659
  AssignGpuMemoryToTiles(&prioritized_tiles_,
                         &tiles_that_need_to_be_rasterized);
660

661 662 663
  // Finally, schedule rasterizer tasks.
  ScheduleTasks(tiles_that_need_to_be_rasterized);

664 665 666 667 668
  TRACE_EVENT_INSTANT1("cc",
                       "DidManage",
                       TRACE_EVENT_SCOPE_THREAD,
                       "state",
                       TracedValue::FromValue(BasicStateAsValue().release()));
669

670 671 672
  TRACE_COUNTER_ID1("cc",
                    "unused_memory_bytes",
                    this,
673
                    resource_pool_->total_memory_usage_bytes() -
674
                        resource_pool_->acquired_memory_usage_bytes());
675 676
}

677 678 679
bool TileManager::UpdateVisibleTiles() {
  TRACE_EVENT0("cc", "TileManager::UpdateVisibleTiles");

680
  rasterizer_->CheckForCompletedTasks();
681
  did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
682

683
  TRACE_EVENT_INSTANT1(
684 685 686 687 688 689
      "cc",
      "DidUpdateVisibleTiles",
      TRACE_EVENT_SCOPE_THREAD,
      "stats",
      TracedValue::FromValue(RasterTaskCompletionStatsAsValue(
                                 update_visible_tiles_stats_).release()));
690 691 692 693 694
  update_visible_tiles_stats_ = RasterTaskCompletionStats();

  bool did_initialize_visible_tile = did_initialize_visible_tile_;
  did_initialize_visible_tile_ = false;
  return did_initialize_visible_tile;
695 696 697 698
}

scoped_ptr<base::Value> TileManager::BasicStateAsValue() const {
  scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
699
  state->SetInteger("tile_count", tiles_.size());
700 701 702 703
  state->Set("global_state", global_state_.AsValue().release());
  return state.PassAs<base::Value>();
}

704
void TileManager::AssignGpuMemoryToTiles(
705
    PrioritizedTileSet* tiles,
706
    TileVector* tiles_that_need_to_be_rasterized) {
707 708
  TRACE_EVENT0("cc", "TileManager::AssignGpuMemoryToTiles");

709 710 711 712 713 714 715
  // Maintain the list of released resources that can potentially be re-used
  // or deleted.
  // If this operation becomes expensive too, only do this after some
  // resource(s) was returned. Note that in that case, one also need to
  // invalidate when releasing some resource from the pool.
  resource_pool_->CheckBusyResources();

716 717
  // Now give memory out to the tiles until we're out, and build
  // the needs-to-be-rasterized queue.
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
  all_tiles_that_need_to_be_rasterized_have_memory_ = true;
  all_tiles_required_for_activation_have_memory_ = true;

  // Cast to prevent overflow.
  int64 soft_bytes_available =
      static_cast<int64>(bytes_releasable_) +
      static_cast<int64>(global_state_.soft_memory_limit_in_bytes) -
      static_cast<int64>(resource_pool_->acquired_memory_usage_bytes());
  int64 hard_bytes_available =
      static_cast<int64>(bytes_releasable_) +
      static_cast<int64>(global_state_.hard_memory_limit_in_bytes) -
      static_cast<int64>(resource_pool_->acquired_memory_usage_bytes());
  int resources_available = resources_releasable_ +
                            global_state_.num_resources_limit -
                            resource_pool_->acquired_resource_count();
  size_t soft_bytes_allocatable =
      std::max(static_cast<int64>(0), soft_bytes_available);
  size_t hard_bytes_allocatable =
      std::max(static_cast<int64>(0), hard_bytes_available);
  size_t resources_allocatable = std::max(0, resources_available);

  size_t bytes_that_exceeded_memory_budget = 0;
  size_t soft_bytes_left = soft_bytes_allocatable;
  size_t hard_bytes_left = hard_bytes_allocatable;

  size_t resources_left = resources_allocatable;
  bool oomed_soft = false;
  bool oomed_hard = false;
  bool have_hit_soft_memory = false;  // Soft memory comes after hard.
747

748
  unsigned schedule_priority = 1u;
749
  for (PrioritizedTileSet::Iterator it(tiles, true); it; ++it) {
750 751
    Tile* tile = *it;
    ManagedTileState& mts = tile->managed_state();
752

753
    mts.scheduled_priority = schedule_priority++;
754

755
    mts.raster_mode = tile->DetermineOverallRasterMode();
756

757 758
    ManagedTileState::TileVersion& tile_version =
        mts.tile_versions[mts.raster_mode];
759

760 761 762
    // If this tile doesn't need a resource, then nothing to do.
    if (!tile_version.requires_resource())
      continue;
763

764 765 766 767
    // If the tile is not needed, free it up.
    if (mts.bin == NEVER_BIN) {
      FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile);
      continue;
768
    }
769

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
    const bool tile_uses_hard_limit = mts.bin <= NOW_BIN;
    const size_t bytes_if_allocated = BytesConsumedIfAllocated(tile);
    const size_t tile_bytes_left =
        (tile_uses_hard_limit) ? hard_bytes_left : soft_bytes_left;

    // Hard-limit is reserved for tiles that would cause a calamity
    // if they were to go away, so by definition they are the highest
    // priority memory, and must be at the front of the list.
    DCHECK(!(have_hit_soft_memory && tile_uses_hard_limit));
    have_hit_soft_memory |= !tile_uses_hard_limit;

    size_t tile_bytes = 0;
    size_t tile_resources = 0;

    // It costs to maintain a resource.
    for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
      if (mts.tile_versions[mode].resource_) {
        tile_bytes += bytes_if_allocated;
        tile_resources++;
      }
    }

    // Allow lower priority tiles with initialized resources to keep
    // their memory by only assigning memory to new raster tasks if
    // they can be scheduled.
    bool reached_scheduled_raster_tasks_limit =
        tiles_that_need_to_be_rasterized->size() >= kScheduledRasterTasksLimit;
    if (!reached_scheduled_raster_tasks_limit) {
      // If we don't have the required version, and it's not in flight
      // then we'll have to pay to create a new task.
      if (!tile_version.resource_ && !tile_version.raster_task_) {
        tile_bytes += bytes_if_allocated;
        tile_resources++;
      }
    }

    // Tile is OOM.
    if (tile_bytes > tile_bytes_left || tile_resources > resources_left) {
      bool was_ready_to_draw = tile->IsReadyToDraw();

      FreeResourcesForTile(tile);

      // This tile was already on screen and now its resources have been
      // released. In order to prevent checkerboarding, set this tile as
      // rasterize on demand immediately.
      if (mts.visible_and_ready_to_draw)
        tile_version.set_rasterize_on_demand();

      if (was_ready_to_draw)
        client_->NotifyTileStateChanged(tile);

      oomed_soft = true;
      if (tile_uses_hard_limit) {
        oomed_hard = true;
        bytes_that_exceeded_memory_budget += tile_bytes;
      }
    } else {
      resources_left -= tile_resources;
      hard_bytes_left -= tile_bytes;
      soft_bytes_left =
          (soft_bytes_left > tile_bytes) ? soft_bytes_left - tile_bytes : 0;
      if (tile_version.resource_)
        continue;
    }

    DCHECK(!tile_version.resource_);

    // Tile shouldn't be rasterized if |tiles_that_need_to_be_rasterized|
    // has reached it's limit or we've failed to assign gpu memory to this
    // or any higher priority tile. Preventing tiles that fit into memory
    // budget to be rasterized when higher priority tile is oom is
    // important for two reasons:
    // 1. Tile size should not impact raster priority.
    // 2. Tiles with existing raster task could otherwise incorrectly
    //    be added as they are not affected by |bytes_allocatable|.
    bool can_schedule_tile =
        !oomed_soft && !reached_scheduled_raster_tasks_limit;

    if (!can_schedule_tile) {
      all_tiles_that_need_to_be_rasterized_have_memory_ = false;
      if (tile->required_for_activation())
        all_tiles_required_for_activation_have_memory_ = false;
      it.DisablePriorityOrdering();
      continue;
854
    }
855

856
    tiles_that_need_to_be_rasterized->push_back(tile);
857 858
  }

859 860 861 862 863 864 865 866 867 868 869
  // OOM reporting uses hard-limit, soft-OOM is normal depending on limit.
  ever_exceeded_memory_budget_ |= oomed_hard;
  if (ever_exceeded_memory_budget_) {
    TRACE_COUNTER_ID2("cc",
                      "over_memory_budget",
                      this,
                      "budget",
                      global_state_.hard_memory_limit_in_bytes,
                      "over",
                      bytes_that_exceeded_memory_budget);
  }
870
  memory_stats_from_last_assign_.total_budget_in_bytes =
871
      global_state_.hard_memory_limit_in_bytes;
872 873 874 875 876
  memory_stats_from_last_assign_.bytes_allocated =
      hard_bytes_allocatable - hard_bytes_left;
  memory_stats_from_last_assign_.bytes_unreleasable =
      resource_pool_->acquired_memory_usage_bytes() - bytes_releasable_;
  memory_stats_from_last_assign_.bytes_over = bytes_that_exceeded_memory_budget;
877 878
}

879
void TileManager::FreeResourceForTile(Tile* tile, RasterMode mode) {
880
  ManagedTileState& mts = tile->managed_state();
881
  if (mts.tile_versions[mode].resource_) {
882
    resource_pool_->ReleaseResource(mts.tile_versions[mode].resource_.Pass());
883 884 885 886 887 888 889

    DCHECK_GE(bytes_releasable_, BytesConsumedIfAllocated(tile));
    DCHECK_GE(resources_releasable_, 1u);

    bytes_releasable_ -= BytesConsumedIfAllocated(tile);
    --resources_releasable_;
  }
890 891
}

892 893
void TileManager::FreeResourcesForTile(Tile* tile) {
  for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
894
    FreeResourceForTile(tile, static_cast<RasterMode>(mode));
895
  }
896
}
897

898
void TileManager::FreeUnusedResourcesForTile(Tile* tile) {
899 900
  DCHECK(tile->IsReadyToDraw());
  ManagedTileState& mts = tile->managed_state();
901
  RasterMode used_mode = LOW_QUALITY_RASTER_MODE;
902 903 904 905 906 907 908
  for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
    if (mts.tile_versions[mode].IsReadyToDraw()) {
      used_mode = static_cast<RasterMode>(mode);
      break;
    }
  }

909
  for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
910
    if (mode != used_mode)
911
      FreeResourceForTile(tile, static_cast<RasterMode>(mode));
912 913 914
  }
}

915 916 917 918 919 920 921 922
void TileManager::FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(
    Tile* tile) {
  bool was_ready_to_draw = tile->IsReadyToDraw();
  FreeResourcesForTile(tile);
  if (was_ready_to_draw)
    client_->NotifyTileStateChanged(tile);
}

923 924
void TileManager::ScheduleTasks(
    const TileVector& tiles_that_need_to_be_rasterized) {
925 926 927 928
  TRACE_EVENT1("cc",
               "TileManager::ScheduleTasks",
               "count",
               tiles_that_need_to_be_rasterized.size());
929

930 931
  DCHECK(did_check_for_completed_tasks_since_last_schedule_tasks_);

932
  raster_queue_.Reset();
933

934 935
  // Build a new task queue containing all task currently needed. Tasks
  // are added in order of priority, highest priority task first.
936 937
  for (TileVector::const_iterator it = tiles_that_need_to_be_rasterized.begin();
       it != tiles_that_need_to_be_rasterized.end();
938 939 940 941 942
       ++it) {
    Tile* tile = *it;
    ManagedTileState& mts = tile->managed_state();
    ManagedTileState::TileVersion& tile_version =
        mts.tile_versions[mts.raster_mode];
943

944 945
    DCHECK(tile_version.requires_resource());
    DCHECK(!tile_version.resource_);
946

947
    if (!tile_version.raster_task_)
948
      tile_version.raster_task_ = CreateRasterTask(tile);
949

950
    raster_queue_.items.push_back(RasterTaskQueue::Item(
951
        tile_version.raster_task_.get(), tile->required_for_activation()));
952
    raster_queue_.required_for_activation_count +=
953
        tile->required_for_activation();
954
  }
955

956 957 958 959
  // We must reduce the amount of unused resoruces before calling
  // ScheduleTasks to prevent usage from rising above limits.
  resource_pool_->ReduceResourceUsage();

960
  // Schedule running of |raster_tasks_|. This replaces any previously
961
  // scheduled tasks and effectively cancels all tasks not present
962
  // in |raster_tasks_|.
963
  rasterizer_->ScheduleTasks(&raster_queue_);
964

965 966 967 968 969
  // It's now safe to clean up orphan tasks as raster worker pool is not
  // allowed to keep around unreferenced raster tasks after ScheduleTasks() has
  // been called.
  orphan_raster_tasks_.clear();

970
  did_check_for_completed_tasks_since_last_schedule_tasks_ = false;
971 972
}

973
scoped_refptr<ImageDecodeTask> TileManager::CreateImageDecodeTask(
974 975
    Tile* tile,
    SkPixelRef* pixel_ref) {
976
  return make_scoped_refptr(new ImageDecodeTaskImpl(
977 978 979
      pixel_ref,
      tile->layer_id(),
      rendering_stats_instrumentation_,
980 981
      base::Bind(&TileManager::OnImageDecodeTaskCompleted,
                 base::Unretained(this),
982
                 tile->layer_id(),
983
                 base::Unretained(pixel_ref))));
984 985
}

986
scoped_refptr<RasterTask> TileManager::CreateRasterTask(Tile* tile) {
987 988
  ManagedTileState& mts = tile->managed_state();

989
  scoped_ptr<ScopedResource> resource =
990
      resource_pool_->AcquireResource(tile->tile_size_.size());
991
  const ScopedResource* const_resource = resource.get();
992 993

  // Create and queue all image decode tasks that this tile depends on.
994
  ImageDecodeTask::Vector decode_tasks;
995
  PixelRefTaskMap& existing_pixel_refs = image_decode_tasks_[tile->layer_id()];
996 997 998 999 1000
  for (PicturePileImpl::PixelRefIterator iter(
           tile->content_rect(), tile->contents_scale(), tile->picture_pile());
       iter;
       ++iter) {
    SkPixelRef* pixel_ref = *iter;
1001
    uint32_t id = pixel_ref->getGenerationID();
1002

1003
    // Append existing image decode task if available.
1004 1005
    PixelRefTaskMap::iterator decode_task_it = existing_pixel_refs.find(id);
    if (decode_task_it != existing_pixel_refs.end()) {
1006
      decode_tasks.push_back(decode_task_it->second);
1007 1008 1009 1010
      continue;
    }

    // Create and append new image decode task for this pixel ref.
1011
    scoped_refptr<ImageDecodeTask> decode_task =
1012 1013
        CreateImageDecodeTask(tile, pixel_ref);
    decode_tasks.push_back(decode_task);
1014
    existing_pixel_refs[id] = decode_task;
1015 1016
  }

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
  return make_scoped_refptr(
      new RasterTaskImpl(const_resource,
                         tile->picture_pile(),
                         tile->content_rect(),
                         tile->contents_scale(),
                         mts.raster_mode,
                         mts.resolution,
                         tile->layer_id(),
                         static_cast<const void*>(tile),
                         tile->source_frame_number(),
1027
                         tile->use_picture_analysis(),
1028 1029 1030 1031 1032 1033 1034
                         rendering_stats_instrumentation_,
                         base::Bind(&TileManager::OnRasterTaskCompleted,
                                    base::Unretained(this),
                                    tile->id(),
                                    base::Passed(&resource),
                                    mts.raster_mode),
                         &decode_tasks));
1035 1036
}

1037 1038 1039
void TileManager::OnImageDecodeTaskCompleted(int layer_id,
                                             SkPixelRef* pixel_ref,
                                             bool was_canceled) {
1040 1041 1042 1043 1044
  // If the task was canceled, we need to clean it up
  // from |image_decode_tasks_|.
  if (!was_canceled)
    return;

1045
  LayerPixelRefTaskMap::iterator layer_it = image_decode_tasks_.find(layer_id);
1046 1047 1048 1049 1050 1051 1052 1053 1054
  if (layer_it == image_decode_tasks_.end())
    return;

  PixelRefTaskMap& pixel_ref_tasks = layer_it->second;
  PixelRefTaskMap::iterator task_it =
      pixel_ref_tasks.find(pixel_ref->getGenerationID());

  if (task_it != pixel_ref_tasks.end())
    pixel_ref_tasks.erase(task_it);
1055 1056 1057
}

void TileManager::OnRasterTaskCompleted(
1058
    Tile::Id tile_id,
1059
    scoped_ptr<ScopedResource> resource,
1060 1061
    RasterMode raster_mode,
    const PicturePileImpl::Analysis& analysis,
1062
    bool was_canceled) {
1063 1064
  TileMap::iterator it = tiles_.find(tile_id);
  if (it == tiles_.end()) {
1065
    ++update_visible_tiles_stats_.canceled_count;
1066 1067 1068 1069 1070
    resource_pool_->ReleaseResource(resource.Pass());
    return;
  }

  Tile* tile = it->second;
1071
  ManagedTileState& mts = tile->managed_state();
1072
  ManagedTileState::TileVersion& tile_version = mts.tile_versions[raster_mode];
1073 1074 1075
  DCHECK(tile_version.raster_task_);
  orphan_raster_tasks_.push_back(tile_version.raster_task_);
  tile_version.raster_task_ = NULL;
1076

1077
  if (was_canceled) {
1078
    ++update_visible_tiles_stats_.canceled_count;
1079 1080 1081
    resource_pool_->ReleaseResource(resource.Pass());
    return;
  }
1082

1083 1084
  ++update_visible_tiles_stats_.completed_count;

1085 1086
  if (analysis.is_solid_color) {
    tile_version.set_solid_color(analysis.solid_color);
1087
    resource_pool_->ReleaseResource(resource.Pass());
1088
  } else {
1089
    tile_version.set_use_resource();
1090
    tile_version.resource_ = resource.Pass();
1091 1092 1093

    bytes_releasable_ += BytesConsumedIfAllocated(tile);
    ++resources_releasable_;
1094
  }
1095

1096
  FreeUnusedResourcesForTile(tile);
1097
  if (tile->priority(ACTIVE_TREE).distance_to_visible == 0.f)
1098
    did_initialize_visible_tile_ = true;
1099 1100

  client_->NotifyTileStateChanged(tile);
1101
}
1102

1103
scoped_refptr<Tile> TileManager::CreateTile(PicturePileImpl* picture_pile,
1104 1105 1106
                                            const gfx::Size& tile_size,
                                            const gfx::Rect& content_rect,
                                            const gfx::Rect& opaque_rect,
1107 1108 1109
                                            float contents_scale,
                                            int layer_id,
                                            int source_frame_number,
1110
                                            int flags) {
1111 1112 1113 1114 1115 1116 1117 1118
  scoped_refptr<Tile> tile = make_scoped_refptr(new Tile(this,
                                                         picture_pile,
                                                         tile_size,
                                                         content_rect,
                                                         opaque_rect,
                                                         contents_scale,
                                                         layer_id,
                                                         source_frame_number,
1119
                                                         flags));
1120 1121 1122 1123
  DCHECK(tiles_.find(tile->id()) == tiles_.end());

  tiles_[tile->id()] = tile;
  used_layer_counts_[tile->layer_id()]++;
1124
  prioritized_tiles_dirty_ = true;
1125 1126 1127
  return tile;
}

1128 1129
void TileManager::GetPairedPictureLayers(
    std::vector<PairedPictureLayer>* paired_layers) const {
1130 1131
  const std::vector<PictureLayerImpl*>& layers = client_->GetPictureLayers();

1132 1133
  paired_layers->clear();
  // Reserve a maximum possible paired layers.
1134
  paired_layers->reserve(layers.size());
1135

1136 1137
  for (std::vector<PictureLayerImpl*>::const_iterator it = layers.begin();
       it != layers.end();
1138 1139 1140
       ++it) {
    PictureLayerImpl* layer = *it;

1141 1142
    // TODO(vmpstr): Iterators and should handle this instead. crbug.com/381704
    if (!layer->HasValidTilePriorities())
1143 1144 1145 1146
      continue;

    PictureLayerImpl* twin_layer = layer->GetTwinLayer();

1147 1148 1149
    // Ignore the twin layer when tile priorities are invalid.
    // TODO(vmpstr): Iterators should handle this instead. crbug.com/381704
    if (twin_layer && !twin_layer->HasValidTilePriorities())
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
      twin_layer = NULL;

    PairedPictureLayer paired_layer;
    WhichTree tree = layer->GetTree();

    // If the current tree is ACTIVE_TREE, then always generate a paired_layer.
    // If current tree is PENDING_TREE, then only generate a paired_layer if
    // there is no twin layer.
    if (tree == ACTIVE_TREE) {
      DCHECK(!twin_layer || twin_layer->GetTree() == PENDING_TREE);
      paired_layer.active_layer = layer;
      paired_layer.pending_layer = twin_layer;
      paired_layers->push_back(paired_layer);
    } else if (!twin_layer) {
      paired_layer.active_layer = NULL;
      paired_layer.pending_layer = layer;
      paired_layers->push_back(paired_layer);
    }
  }
}

TileManager::PairedPictureLayer::PairedPictureLayer()
    : active_layer(NULL), pending_layer(NULL) {}

TileManager::PairedPictureLayer::~PairedPictureLayer() {}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
TileManager::RasterTileIterator::RasterTileIterator(TileManager* tile_manager,
                                                    TreePriority tree_priority)
    : tree_priority_(tree_priority), comparator_(tree_priority) {
  std::vector<TileManager::PairedPictureLayer> paired_layers;
  tile_manager->GetPairedPictureLayers(&paired_layers);
  bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;

  paired_iterators_.reserve(paired_layers.size());
  iterator_heap_.reserve(paired_layers.size());
  for (std::vector<TileManager::PairedPictureLayer>::iterator it =
           paired_layers.begin();
       it != paired_layers.end();
       ++it) {
    PairedPictureLayerIterator paired_iterator;
    if (it->active_layer) {
      paired_iterator.active_iterator =
          PictureLayerImpl::LayerRasterTileIterator(it->active_layer,
                                                    prioritize_low_res);
    }

    if (it->pending_layer) {
      paired_iterator.pending_iterator =
          PictureLayerImpl::LayerRasterTileIterator(it->pending_layer,
                                                    prioritize_low_res);
    }

    if (paired_iterator.PeekTile(tree_priority_) != NULL) {
      paired_iterators_.push_back(paired_iterator);
      iterator_heap_.push_back(&paired_iterators_.back());
    }
  }

  std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
}

TileManager::RasterTileIterator::~RasterTileIterator() {}

TileManager::RasterTileIterator& TileManager::RasterTileIterator::operator++() {
  DCHECK(*this);

  std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
  PairedPictureLayerIterator* paired_iterator = iterator_heap_.back();
  iterator_heap_.pop_back();

  paired_iterator->PopTile(tree_priority_);
  if (paired_iterator->PeekTile(tree_priority_) != NULL) {
    iterator_heap_.push_back(paired_iterator);
    std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
  }
  return *this;
}

TileManager::RasterTileIterator::operator bool() const {
  return !iterator_heap_.empty();
}

Tile* TileManager::RasterTileIterator::operator*() {
  DCHECK(*this);
  return iterator_heap_.front()->PeekTile(tree_priority_);
}

TileManager::RasterTileIterator::PairedPictureLayerIterator::
    PairedPictureLayerIterator() {}

TileManager::RasterTileIterator::PairedPictureLayerIterator::
    ~PairedPictureLayerIterator() {}

Tile* TileManager::RasterTileIterator::PairedPictureLayerIterator::PeekTile(
    TreePriority tree_priority) {
  PictureLayerImpl::LayerRasterTileIterator* next_iterator =
      NextTileIterator(tree_priority).first;
  if (!next_iterator)
    return NULL;

  DCHECK(*next_iterator);
  DCHECK(std::find(returned_shared_tiles.begin(),
                   returned_shared_tiles.end(),
                   **next_iterator) == returned_shared_tiles.end());
  return **next_iterator;
}

void TileManager::RasterTileIterator::PairedPictureLayerIterator::PopTile(
    TreePriority tree_priority) {
  PictureLayerImpl::LayerRasterTileIterator* next_iterator =
      NextTileIterator(tree_priority).first;
  DCHECK(next_iterator);
  DCHECK(*next_iterator);
  returned_shared_tiles.push_back(**next_iterator);
  ++(*next_iterator);

  next_iterator = NextTileIterator(tree_priority).first;
  while (next_iterator &&
         std::find(returned_shared_tiles.begin(),
                   returned_shared_tiles.end(),
                   **next_iterator) != returned_shared_tiles.end()) {
    ++(*next_iterator);
    next_iterator = NextTileIterator(tree_priority).first;
  }
}

std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>
TileManager::RasterTileIterator::PairedPictureLayerIterator::NextTileIterator(
    TreePriority tree_priority) {
  // If both iterators are out of tiles, return NULL.
  if (!active_iterator && !pending_iterator) {
    return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>(
        NULL, ACTIVE_TREE);
  }

  // If we only have one iterator with tiles, return it.
  if (!active_iterator)
    return std::make_pair(&pending_iterator, PENDING_TREE);
  if (!pending_iterator)
    return std::make_pair(&active_iterator, ACTIVE_TREE);

  // Now both iterators have tiles, so we have to decide based on tree priority.
  switch (tree_priority) {
    case SMOOTHNESS_TAKES_PRIORITY:
      return std::make_pair(&active_iterator, ACTIVE_TREE);
    case NEW_CONTENT_TAKES_PRIORITY:
      return std::make_pair(&pending_iterator, ACTIVE_TREE);
    case SAME_PRIORITY_FOR_BOTH_TREES: {
      Tile* active_tile = *active_iterator;
      Tile* pending_tile = *pending_iterator;
      if (active_tile == pending_tile)
        return std::make_pair(&active_iterator, ACTIVE_TREE);

      const TilePriority& active_priority = active_tile->priority(ACTIVE_TREE);
      const TilePriority& pending_priority =
          pending_tile->priority(PENDING_TREE);

      if (active_priority.IsHigherPriorityThan(pending_priority))
        return std::make_pair(&active_iterator, ACTIVE_TREE);
      return std::make_pair(&pending_iterator, PENDING_TREE);
    }
  }

  NOTREACHED();
  // Keep the compiler happy.
  return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>(
      NULL, ACTIVE_TREE);
}

TileManager::RasterTileIterator::RasterOrderComparator::RasterOrderComparator(
    TreePriority tree_priority)
    : tree_priority_(tree_priority) {}

bool TileManager::RasterTileIterator::RasterOrderComparator::operator()(
    PairedPictureLayerIterator* a,
    PairedPictureLayerIterator* b) const {
  std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> a_pair =
      a->NextTileIterator(tree_priority_);
  DCHECK(a_pair.first);
  DCHECK(*a_pair.first);

  std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> b_pair =
      b->NextTileIterator(tree_priority_);
  DCHECK(b_pair.first);
  DCHECK(*b_pair.first);

  Tile* a_tile = **a_pair.first;
  Tile* b_tile = **b_pair.first;

1339 1340 1341 1342 1343 1344
  const TilePriority& a_priority =
      a_tile->priority_for_tree_priority(tree_priority_);
  const TilePriority& b_priority =
      b_tile->priority_for_tree_priority(tree_priority_);
  bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;

1345 1346 1347 1348
  // Now we have to return true iff b is higher priority than a.

  // If the bin is the same but the resolution is not, then the order will be
  // determined by whether we prioritize low res or not.
1349 1350
  // TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile
  // class but instead produced by the iterators.
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
  if (b_priority.priority_bin == a_priority.priority_bin &&
      b_priority.resolution != a_priority.resolution) {
    // Non ideal resolution should be sorted lower than other resolutions.
    if (a_priority.resolution == NON_IDEAL_RESOLUTION)
      return true;

    if (b_priority.resolution == NON_IDEAL_RESOLUTION)
      return false;

    if (prioritize_low_res)
      return b_priority.resolution == LOW_RESOLUTION;

    return b_priority.resolution == HIGH_RESOLUTION;
1364 1365
  }

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
  return b_priority.IsHigherPriorityThan(a_priority);
}

TileManager::EvictionTileIterator::EvictionTileIterator()
    : comparator_(SAME_PRIORITY_FOR_BOTH_TREES) {}

TileManager::EvictionTileIterator::EvictionTileIterator(
    TileManager* tile_manager,
    TreePriority tree_priority)
    : tree_priority_(tree_priority), comparator_(tree_priority) {
  std::vector<TileManager::PairedPictureLayer> paired_layers;

  tile_manager->GetPairedPictureLayers(&paired_layers);

  paired_iterators_.reserve(paired_layers.size());
  iterator_heap_.reserve(paired_layers.size());
  for (std::vector<TileManager::PairedPictureLayer>::iterator it =
           paired_layers.begin();
       it != paired_layers.end();
       ++it) {
    PairedPictureLayerIterator paired_iterator;
    if (it->active_layer) {
      paired_iterator.active_iterator =
          PictureLayerImpl::LayerEvictionTileIterator(it->active_layer,
                                                      tree_priority_);
    }

    if (it->pending_layer) {
      paired_iterator.pending_iterator =
          PictureLayerImpl::LayerEvictionTileIterator(it->pending_layer,
                                                      tree_priority_);
    }

    if (paired_iterator.PeekTile(tree_priority_) != NULL) {
      paired_iterators_.push_back(paired_iterator);
      iterator_heap_.push_back(&paired_iterators_.back());
    }
  }

  std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
}

TileManager::EvictionTileIterator::~EvictionTileIterator() {}

TileManager::EvictionTileIterator& TileManager::EvictionTileIterator::
operator++() {
  std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
  PairedPictureLayerIterator* paired_iterator = iterator_heap_.back();
  iterator_heap_.pop_back();

  paired_iterator->PopTile(tree_priority_);
  if (paired_iterator->PeekTile(tree_priority_) != NULL) {
    iterator_heap_.push_back(paired_iterator);
    std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
  }
  return *this;
}

TileManager::EvictionTileIterator::operator bool() const {
  return !iterator_heap_.empty();
}

Tile* TileManager::EvictionTileIterator::operator*() {
  DCHECK(*this);
  return iterator_heap_.front()->PeekTile(tree_priority_);
}

TileManager::EvictionTileIterator::PairedPictureLayerIterator::
    PairedPictureLayerIterator() {}

TileManager::EvictionTileIterator::PairedPictureLayerIterator::
    ~PairedPictureLayerIterator() {}

Tile* TileManager::EvictionTileIterator::PairedPictureLayerIterator::PeekTile(
    TreePriority tree_priority) {
  PictureLayerImpl::LayerEvictionTileIterator* next_iterator =
      NextTileIterator(tree_priority);
  if (!next_iterator)
    return NULL;

  DCHECK(*next_iterator);
  DCHECK(std::find(returned_shared_tiles.begin(),
                   returned_shared_tiles.end(),
                   **next_iterator) == returned_shared_tiles.end());
  return **next_iterator;
}

void TileManager::EvictionTileIterator::PairedPictureLayerIterator::PopTile(
    TreePriority tree_priority) {
  PictureLayerImpl::LayerEvictionTileIterator* next_iterator =
      NextTileIterator(tree_priority);
  DCHECK(next_iterator);
  DCHECK(*next_iterator);
  returned_shared_tiles.push_back(**next_iterator);
  ++(*next_iterator);

  next_iterator = NextTileIterator(tree_priority);
  while (next_iterator &&
         std::find(returned_shared_tiles.begin(),
                   returned_shared_tiles.end(),
                   **next_iterator) != returned_shared_tiles.end()) {
    ++(*next_iterator);
    next_iterator = NextTileIterator(tree_priority);
  }
}

PictureLayerImpl::LayerEvictionTileIterator*
TileManager::EvictionTileIterator::PairedPictureLayerIterator::NextTileIterator(
    TreePriority tree_priority) {
  // If both iterators are out of tiles, return NULL.
  if (!active_iterator && !pending_iterator)
    return NULL;

  // If we only have one iterator with tiles, return it.
  if (!active_iterator)
    return &pending_iterator;
  if (!pending_iterator)
    return &active_iterator;

  Tile* active_tile = *active_iterator;
  Tile* pending_tile = *pending_iterator;
  if (active_tile == pending_tile)
    return &active_iterator;

  const TilePriority& active_priority =
      active_tile->priority_for_tree_priority(tree_priority);
  const TilePriority& pending_priority =
      pending_tile->priority_for_tree_priority(tree_priority);

  if (pending_priority.IsHigherPriorityThan(active_priority))
    return &active_iterator;
  return &pending_iterator;
}

TileManager::EvictionTileIterator::EvictionOrderComparator::
    EvictionOrderComparator(TreePriority tree_priority)
    : tree_priority_(tree_priority) {}

bool TileManager::EvictionTileIterator::EvictionOrderComparator::operator()(
    PairedPictureLayerIterator* a,
    PairedPictureLayerIterator* b) const {
  PictureLayerImpl::LayerEvictionTileIterator* a_iterator =
      a->NextTileIterator(tree_priority_);
  DCHECK(a_iterator);
  DCHECK(*a_iterator);

  PictureLayerImpl::LayerEvictionTileIterator* b_iterator =
      b->NextTileIterator(tree_priority_);
  DCHECK(b_iterator);
  DCHECK(*b_iterator);

  Tile* a_tile = **a_iterator;
  Tile* b_tile = **b_iterator;

  const TilePriority& a_priority =
      a_tile->priority_for_tree_priority(tree_priority_);
  const TilePriority& b_priority =
      b_tile->priority_for_tree_priority(tree_priority_);
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
  bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;

  // Now we have to return true iff b is lower priority than a.

  // If the bin is the same but the resolution is not, then the order will be
  // determined by whether we prioritize low res or not.
  // TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile
  // class but instead produced by the iterators.
  if (b_priority.priority_bin == a_priority.priority_bin &&
      b_priority.resolution != a_priority.resolution) {
    // Non ideal resolution should be sorted higher than other resolutions.
    if (a_priority.resolution == NON_IDEAL_RESOLUTION)
      return false;
1537

1538 1539 1540 1541 1542 1543 1544
    if (b_priority.resolution == NON_IDEAL_RESOLUTION)
      return true;

    if (prioritize_low_res)
      return a_priority.resolution == LOW_RESOLUTION;

    return a_priority.resolution == HIGH_RESOLUTION;
1545 1546
  }
  return a_priority.IsHigherPriorityThan(b_priority);
1547 1548
}

1549 1550 1551 1552 1553 1554
void TileManager::SetRasterizerForTesting(Rasterizer* rasterizer) {
  rasterizer_ = rasterizer;
  rasterizer_->SetClient(this);
}

bool TileManager::IsReadyToActivate() const {
1555 1556 1557 1558
  const std::vector<PictureLayerImpl*>& layers = client_->GetPictureLayers();

  for (std::vector<PictureLayerImpl*>::const_iterator it = layers.begin();
       it != layers.end();
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
       ++it) {
    if (!(*it)->AllTilesRequiredForActivationAreReadyToDraw())
      return false;
  }

  return true;
}

void TileManager::CheckIfReadyToActivate() {
  TRACE_EVENT0("cc", "TileManager::CheckIfReadyToActivate");

  rasterizer_->CheckForCompletedTasks();
  did_check_for_completed_tasks_since_last_schedule_tasks_ = true;

  if (IsReadyToActivate())
    client_->NotifyReadyToActivate();
}

1577
}  // namespace cc